簡易檢索 / 詳目顯示

研究生: 徐慧琳
Hsu, Hui-Lin
論文名稱: 應用於神經訊號偵測之軟性奈米碳管電極
Flexible Carbon Nanotube Electrode for Neuronal Recording
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 67
中文關鍵詞: 軟性電極奈米碳管電極神經訊號偵測
外文關鍵詞: flexible electrode, CNT electrode, neuronal recording
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Si-based MEMS-electrodes have been employed widely to investigate the physiological functions of the brain. However, the rigid Si materials easily damaged the target tissues and consequently will be an obstacle for the long-term usage recording application. This research is to use polyimide flexible substrates to resolve above damaging issue and integrated carbon nanotubes (CNTs) as the recording materials onto the flexible substrates.
    Results show that CNTs were successfully grown on flexible polyimide substrates at □ 400 °C as electrodes for extracellularly neuronal recording. The electrical charge transfer and electrochemical properties of CNTs electrodes were significantly enhanced by UV-ozone exposure, which induced the C-O, C=O, O–C=O bonds formation on CNTs lowering CNT/electrolyte interfacial impedance and increasing interfacial capacitance. Demonstrations of good biocompatibility, durability, adhesion, and neuronal recording capabilities suggest this flexible UV-ozone modified CNT electrode a promising candidate for long-term neuronal recording/stimulation applications.


    由微機電方法所製作的矽電極,已被廣泛應用於研究腦神經的電生理功能。然而此尖硬的矽材料,容易使所偵測的神經組織受損,此對於未來長時間的訊號偵測應用將會造成極大的阻礙。本研究將對議題而改善,使用軟性基材(polyimide)來取代尖硬的矽材料,並利用奈米碳管為主要的感測材料取代矽電極而製作出軟性奈米碳管電極。
    本研究結果顯示奈米碳管可成功在低於 400°C成長於軟性基材(polyimide)上,且成功製成軟性奈米碳管電極紀錄到神經訊號。且軟性奈米碳管電極的電傳遞及電化學能力可利用紫外線臭氧處理而有進一步的提升。實驗結果顯示,紫外線臭氧處理會在奈米碳管外管璧上形成 C-O, C=O, O–C=O 化學鍵結, 進一步降低奈米碳管與電解質溶液之間的電阻抗及提升介面電容。除此之外,紫外線臭氧處理之軟性奈米碳管電極具有好的生物相容性,黏附力,大氣下保存能力,及良好神經訊號偵測能力,顯示本研究所研發之軟性奈米碳管電極具有極大潛力於未來長時間神經訊號偵測應用。

    English Abstract 1 Chinese Abstract 2 Acknowledgement 3 Contents 6 Chapter 1 Introduction 8 Chapter 2 Literature Review 10 2.1 Si-based Multi-Microelectrodes 10 2.2 Flexible Electrodes 11 2.3 Flexible Cabon Nanotubes (CNTs) Electrodes 12 Chapter 3 Experimental 13 3.1 Design and Fabrication of Flexible CNT Electrodes 13 3.1.1 Structure Wafer Preparation 13 3.1.2 CNTs Grown on Flexible Substrates 15 3.1.3 UV-Ozone Exposure 16 3.2 Characterization instruments 17 3.2.1 Morphology Inspection by SEM 17 3.2.2 Electrical Characterization 18 3.2.3 Surface Wettability 19 3.2.4 Microstructure Analysis by HRTEM 20 3.2.5 Degree of Graphitization Analysis 21 3.2.6 Chemical Bonding Analysis 24 3.3 Action Potential Signal Detection 24 3.4 Bio-Compatibility Test 26 Chapter 4 Results 28 4.1 CNT Growth on Flexible Polyimide Substrates 28 4.1.1 CNT Growth versus Process Temperature 28 4.1.2 CNT Growth versus Ni Catalyst Thickness 32 4.1.3 CNT Growth versus Process Pressure 33 4.1.4 Optimum CNT Growth Process Parameters 34 4.2 Physical and Electrical Properties Correlation 36 4.2.1 CNTs by Various Growth Time 36 4.2.2 UV-Ozone Modified CNTs versus As-Grown CNTs 38 4.3 Chemical Property Analysis of UV-Ozone Modified CNTs 42 4.4 Structure Characterization of UV-Ozone Modified CNTs 46 4.5 Long-Term Usage and Adhesion Tests 49 4.6 Action Potential Signal Detection 52 4.7 Bio-Compatibility Test 53 Chapter 5 Discussion 57 5.1 Flexible CNTs Electrodes 57 5.2 UV-Ozone Exposure Induced Impedance Reduction 58 5.3 Action Potential Signal Detection 60 5.4 Neuron Cell Culture 61 Chapter 6 Conclusion 62 Chapter 7 Suggestion to Future Work 63 Chapter 8 Reference 64

    [1] Hochberg, L. R.; Serruya, M. D.; Friehs, G. M.; Mukand, J. A.; Saleh, M.; Caplan, A. H.; Branner, A.; Chen, D.; Penn, R. D.; Donoghue, J. P. Nature 2006, 442, 164.
    [2] Taylor, D. M.; Tillery, S. I.; Schwartz, A. B. Science 2002, 296, 1829
    [3] Chapin, J. K.; Moxon, K. A.; Markowitz, R. S.; Nicolelis, M. Nature Neurosci. 1999, 2, 664.
    [4] Schwartz, A. B.; Cui, X. T.; Weber, D. J.; Moran, D. W. Neuron 2006, 52, 205.
    [5] Loeb, G. E.; Peck, R. A.; Martyniuk, J. J. Neurosci. Methods 1995, 63, 175.
    [6] Robinson, D. Proc. IEEE 1968, 56, 1065.
    [7] Patolsky, F.; Timko, B. P.; Yu, G.; Fang, Y.; Greytak, A. B.; Zheng, G.; Lieber, C. M. Science 2006, 313, 1100.
    [8] Kovacs G. T. A.; Storment C. W.; Halks-Miller M.; Belczynski C. R. Jr; Santina C. C. D.; Lewis E.R.; Maluf N. I. IEEE Trans. Biomed. Eng. 1994, 41, 568.
    [9] Campbell, P. K.; Jones, K. E.; Normann, R. A. Biomed. Sci. Instrum. 1990, 26, 161.
    [10] Ensell, G.; Banks, D. J.; Ewins, D. J.; Balachandran, W.; Richards, P. R. J. Microelectromech. Syst. 1996, 5 117.
    [11] Merabet, L. B.; Rizzo, J. F.; Amedi, A.; Somers, D.C.; Pascual-Leone, A. Nature Reviews Neuroscience 2005, 6, 71.
    [12] Lebedev, M. A.; Nicolelis, M. A. L. Trends in Neurosciences 2006, 29, 536.
    [13] Cheung, K.C.; Renaud, P.; Tanila, H.; Djupsund, K. Biosens. Bioelectron 2007, 22, 1783.
    [14] Pellinen, D.; Moon, T.; Vetter, R.; Miriani, R.; Kipke, D. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 5, 5272.
    [15] Jensen, W.; Yoshida, K.; Hofmann, U. G. IEEE Trans. Biomed. Eng. 2006 53, 934.
    [16] Stieglitz T.; Beutel H., Meyer J. U. Sensors Actuators A 1997, 60, 240.
    [17] Takeuchi S.; Suzuki, T.; Mabuchi, K.; Fujita, H. J. Micromech Microeng. 2004, 14, 104.
    [18] Ijima, S. Nature, 1991, 354, 56.
    [19] Li, Jun; Ng, H. T.; Cassell, A.; Fan W.; Chen, H.;Ye, Q.; Koehne J.; Han J.; Meyyappan, M. Nano Lett., 2003, 3, 597.
    [20] Yeh, M. K.; Tai, N. H.; Liu, J. H. Carbon 2006, 44, 1.
    [21] Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. ChemComm, 2005, 829.
    [22] Gooding, J. J. Electrochimica Acta 2005, 50, 3049.
    [23] Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.; Ballerini, L. Nano Lett. 2005, 5, 1107.
    [24] Keefer, E. W.; Botterman, B. R.; Romero, M. I.; Rossi, A. F.; Gross, G. W. Nature Nanotechnology 2008, 3, 434.
    [25] Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.; Ballerini, L. Nano Lett. 2005, 5, 1107.
    [26] Gheith, M. K.; Pappas, T. C.; Liopo, A. V.; Sinani, V. A.; Shim, B. S.; Motamedi, M.; Wicksted, J. P.; Kotov, N. A. Adv. Mater. 2006, 18, 2975.
    [27] Mazzatenta, A.; Giugliano, M.; Campidelli, S.; Gambazzi, L.; Businaro, L.; Markram, H.; Prato, M.; Ballerini, L. The Journal of Neuroscience 2007, 27, 6931.
    [28] Schmidt, E. M.; Mclntosh, J. S.; Bak, M. J. Med. Biol. Eng. Comput. 1998, 96.
    [29] Hiura, H.; Ebbesen, T. W.; Tanigaki, K.; Takahashi, H. Chemical Physics Letters 1993, 202, 509.
    [30] Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund P. C.; Williams K. A.; Fang S.; Subbaswamy K. R.; Menon M.; Thess, A.; Smalley R. E.; Dresselhaus G.; Dresselhaus M. S. Science 1997, 275, 187.
    [31] “Surface Analysis–The Principle Techniques", John C. Vickerman, John Wiley & Sons 1997.
    [32] Nguyen-Vu, T. D. B.; Chen, H.; Cassell, A. M.; Andrews, R.; Meyyappan, M.; Li, J. Small 2006, 2, 89.
    [33] Li, J.; Koehne, J.E.; Cassell, A.M.; Chen, H.; Ng, H.T.; Ye, Q.; Fan, W.; Han, J.; Meyyappan, M. Electroanalysis 2005, 17, 15.
    [34] Yang, S.; Huo, J.; Song, H.; Chen, X. Electrochimica Acta 2008, 53, 2238.
    [35] Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761.
    [36] Felten, A.; Bittencourt, C. ; Pireaux, J. J. ; Van Lier, G. ; Charlier, J. C. J. Appl. Phys. 2005, 98, 074308.
    [37] Liu, M.; Yang, Y.; Zhu, T.; Liu, Z. Carbon 2005, 43, 1470.
    [38] Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. J. Phys. Chem. B 1999, 103, 8116.
    [39] Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; Mclaughlin, J.; Brown, N. M. D. Carbon 2005, 43, 153.
    [40] Ci, L.; Suhr, J.; Pushparaj, V.; Zhang, X.; Ajayan, P. M. Nano Lett. 2008, 8, 2762.
    [41] Jung, Y. J.; Kar, S.; Talapatra, S.; Soldano, C.; Viswanathan, G.; Li, X.; Yao, Z.; Ou, F. S.; Avadhanula, A.; Vajtai, R.; Curran, S.; Nalamasu, O.; Ajayan, P. M. Nano Lett. 2006, 6, 413.
    [42] Wang, C. Y.; Chen, T. H.; Chang, S. C.; Chin, T. S.; Cheng, S. Y. Appl. Phys. Lett. 2007, 90, 103111.
    [43] Hur, S. H.; Park, O. O.; Rogers, J. A. Appl. Phys. Lett 2005, 86, 243502.
    [44] Zhou, Y.; Hu, L.; Gruner, G. Appl. Phys. Lett. 2006, 88, 123109.
    [45] Kong, J.; Franklin, N.; Zhou, C.; Chapline, M.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622.
    [46] Snow, E.; Perkins, F.; Houser, E.; Badescu, S.; Reinecke, T. Science 2005, 307, 1942.
    [47] Wang, K.; Fishman, H. A.; Dai, H.; Harris, J. S. Nano Lett. 2006, 6, 2043.
    [48] Li, P.; Lim, X.; Yanwu, Z.; Yu, T.; Ong, C. K.; Shen, Z.; Wee A. T. S.; Sow, C. H. J. Phys. Chem. B 2007, 111, 1672.
    [49] Chakrapani, N.; Wei, B.; Carrillo, A.; Ajayan, P. M.; Kane, R. S. Proc. Natl. Acad. Sci. U.S.A.
    [50] Hu, C. C.; Su, J. H.; Wen, T. C. J. Phys. Chem. Solids 2007, 68, 2353.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE