簡易檢索 / 詳目顯示

研究生: 賴學良
Lai, Hsueh Liang
論文名稱: 電漿處理對於奈米碳管/鑽石針尖陣列複合之場發射性質研究
Field emission characteristics of plasma treated carbon nanotubes on diamond tip arrays
指導教授: 蔡宏營
Tsai, Hung Yin
口試委員: 施文欽
Shih, Wen Ching
戴念華
Tai, Nyan Hwa
曾仕君
Tseng, Shih Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 場發射奈米碳管鑽石針尖陣列電漿處理
外文關鍵詞: field emission, carbon nanotubes, diamond tip arrays, plasma treatment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究目的結合電漿蝕刻奈米碳管以及與鑽石薄膜合成複合材料,製作出有一低起始電場與高電流穩定度之優異場發射冷陰極。
    研究方法是以鑽石針尖結構來作為奈米碳管與矽基板之間的緩衝層,減少場發射過程中產生之焦耳熱以達到提升奈米碳管電流穩定度之目的;並以不同電漿對成長於鑽石結構上之奈米碳管來進行改質,使碳管結構產生改變,達到降低起始電場之目的。以掃描式電子顯微鏡來觀測電漿對奈米碳管形貌之影響,並以拉曼光譜檢測其結構之變化並且測量其場發射效應。
    本研究成功以一新穎製程製作出矽針尖陣列,此製程包含微影與矽等向蝕刻兩步驟,為一簡單且低成本之製程。而之後在矽針尖陣列上依序成長鑽石與奈米碳管,再以電漿處理奈米碳管,形成一新穎場發射陰極端。
    本研究所製作之新穎場發射陰極端結合了奈米碳管、電漿處理與鑽石針尖陣列的優點,擁有2.84 V/μm低起始電場,電場到達5.5 V/μm時有0.59 mA/cm2的電流密度,場增益因子為1701,且在15小時內之電流穩定度優於原始奈米碳管與成長於鑽石針尖陣列的奈米碳管。


    Abstract
    The purpose of this study is to produce a plasma treated carbon nanotubes (CNTs) composite diamond tip arrays with low turn-on field and steady emission current density. It can be a high performance field emission cathode.
    CNTs (for current emission) and diamond (for heat spreading) composite presents good FE properties. The diamond film conducts away the Joule heat, which is generated between CNTs and Si substrate during field emission. The plasma changes the morphology and structure of CNTs and improves the field emission properties. The structural and morphology of treated CNTs are examined by Raman spectroscopy and scanning electron microscopy (SEM), respectively. The field emission effect of treated CNTs are examined by the field emission meter.
    Micro Si tip arrays is fabricated by using lithography and XeF2 etching. This novel method is low-cost and simple.
    In this study, a novel FE cathode has been fabricated, which combines the advantage of diamond tip arrays, CNTs, and plasma treatment. The cathode presents good FE properties: the turn on voltage is 2.84 V/µm, the current density at 5.5 V/µm is 0.59 mA/cm2, and the field enhancement factor is 1701. The current stability of novel FE cathode is better than as grown CNTs/CNTs on diamond tip arrays.

    目錄 摘要 I Abstract II 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 場發射效應 5 2.1.1 場發射基礎理論 5 2.1.2 發射端尺寸效應 6 2.1.3 場發射遮蔽效應 11 2.2 奈米碳管 19 2.2.1 奈米碳管簡介 19 2.2.2 奈米碳管複合鑽石薄膜 21 2.2.3 奈米碳管後處理 23 2.3 奈米碳管電漿後處理 28 2.4 鑽石針尖陣列 35 第三章 實驗方法與製程 38 3.1 實驗儀器與實驗材料 38 3.1.1 微波電漿化學氣相沉積系統 38 3.1.2 場發射量測儀 40 3.1.3 拉曼光譜儀 41 3.1.4 掃描式電子顯微鏡 42 3.1.5 實驗氣體、藥品與材料 43 3.2 實驗流程圖 44 3.3 實驗製程 45 3.3.1 試片清潔 45 3.3.2 鑽石前處理 45 3.3.3 鑽石薄膜成長 45 3.3.4 微影蝕刻製作尖端結構 46 3.3.5 觸媒塗佈與成長 48 3.3.6 電漿處理 48 第四章 實驗結果與討論 51 4.1 電漿處理奈米碳管 51 4.1.1 電漿處理奈米碳管之表面形貌分析 51 4.1.2 電漿處理奈米碳管之拉曼分析 59 4.1.3 電漿處理奈米碳管之場發射特性分析 61 4.2 矽針尖陣列製作 63 4.3 鑽石針尖陣列 66 4.3.1 鑽石針尖陣列之形貌分析 67 4.3.2 鑽石針尖陣列之拉曼分析 68 4.3.3 鑽石針尖陣列之場發射特性分析 69 4.4 電漿處理成長於鑽石針尖陣列之奈米碳管 70 4.4.1 電漿處理成長於鑽石針尖陣列之奈米碳管表面形貌分析 71 4.4.2 電漿處理成長於鑽石針尖陣列之奈米碳管拉曼分析 72 4.4.3 電漿處理成長於鑽石針尖陣列之奈米碳管場發射特性分析……………………………………………………………………73 4.4.4電漿處理對於鑽石針尖陣列之影響 77 第五章 結論與未來規劃 79 參考文獻 81

    參考文獻
    [1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
    [2] R. H. Fowler and L. Nordheim, “Electron emission in entense electric fields,” Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
    [3] J. He, P. H. Cutler, and N. M. Miskovsky, “Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, vol.59, pp.1644-1646, 1991.
    [4] T. A. de Assis, F. Borondo, C. M. C. de Castilho, F. Brito Mota, and R. M. Benito, “Field emission properties of an array of pyramidal structures,” Journal of Physics D: Applied Physics, vol.42, pp.195303-195308, 2009.
    [5] R. Ławrowski, C. Langer, C. Prommesberger, F. Dams, M. Bachmann, and R. Schreiner, “Fabrication and simulation of silicon structures with high aspect ratio for field emission devices,“ Technical Digest, IVNC 2014, pp.2-25, 2014.
    [6] D. S. Roveri, G. M. Sant’Anna, H. H. Bertan, J. F. Mologni, M. A. R. Alves, and E. S. Braga, “Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method,” Ultramicroscopy, vol.160, pp.247-251, 2016.
    [7] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, vol.76, pp.2071-2073, 2000.
    [8] K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, and D. G. Hasko, “Field emission from dense, sparse, and patterned arrays of carbon nanofibers,” Applied Physics Letters, vol.80, pp.2011-2013, 2002.
    [9] X. Q. Wang, M. Wang, H. L. Ge, Q. Chen, and Y. B. Xu, “Modeling and simulation for the field emission of carbon nanotubes array,” Physica E, vol.30, pp.101-106, 2005.
    [10] J. Yun, R. Wang, W. K. Choi, J. T. L. Thong, and C. V. Thompson, “Field emission from a large area of vertically-aligned carbon nanofibers with nanoscale tips and controlled spatial geometry,” Carbon, vol.48, pp.1362-1368, 2010.
    [11] H. Y. Tsai and C. C. Yeh, “Suppressed Screening Effects in Curviliner Tetrahedral Diamond Field Emitter Arrays Fabricated on Anodic Aluminum Oxide,” Journal of The Electrochemical Society, vol.159, pp.K1-K4, 2012.
    [12] S. Iijima, ”Helical microtubules of graphitic carbon,” Nature, vol.354, pp.56-58, 1991.
    [13] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol.6, pp.183-191, 2007.
    [14] W. A. de Heer, A. Châtelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source,” Science, vol.270, pp.1179-1180, 1995.
    [15] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Changa, “A nanotube-based field-emission flat panel display,” Applied Physics Letters, vol.72, pp.2912-2913, 1998.
    [16] N. Zhao, J. Chen, K. Qu, Q. Khan, W. Lei, and X. Zhang, “Stable electron field emission from carbon nanotubes emitter transferred on graphene films,” Physica E, vol.72, pp384-88, 2015.
    [17] D. Varshney, B.R.Weiner, and G. Morell, “Growth and field emission study of a monolithic carbon nanotube/diamond composite,” Carbon, vol.48, pp. 3353-3358, 2010.
    [18] D. Varshney, A.V. Sumant, B.R. Weiner, and G. Morell, “Growth of carbon nanotubes on spontaneously detached free standing diamond films and their field emission properties,” Diamond and Related Materials, vol.30, pp.42-47, 2012.
    [19] L. Yang, Q. Yang, C. Zhang, and Y.S. Li, “Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability,” Thin Solid Films, vol.549, pp.42-45, 2013.
    [20] H. F. Cheng, H. Y. Chiang, C. C. Horng, H. C. Chen, C. S. Wang, and I. N. Lin, “Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film,” Journal of Applied Physics, vol.109, pp.033711-1-033711-8, 2011.
    [21] K. T. Teng, H. C. Chen, H. Y. Chiang, C. C. Horng, H. F. Cheng, K. J. Sankaran, N. H. Tai, C. Y. Lee, and I. N. Lin,” The role of nano-graphite phase on the enhancement of electron field emission properties of ultrananocrystalline diamond films,” Diamond & Related Materials, vol.24, pp.126-133, 2012.
    [22] T. H. Chang, S. Kunuku, Y. J. Hong, K. C. Leou, T. R. Yew, N. H. Tai, and I. N. Lin, “Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films,” ACS Appl. Mater. Interfaces, vol.6, pp.11589-11597, 2014.
    [23] K. J. Sankaran, B. R. Huang, A. Saravanan, D. Manoharan, N. H. Tai, and I. N. Lin, “Heterogranular-Structured Diamond−Gold Nanohybrids: A New Long-Life Electronic Display Cathode,” ACS Appl. Mater. Interfaces, vol.7, pp.27078-27086, 2015.
    [24] S. C. Lin, C. J. Yeh, D. Manoharan, K. C. Leou, and I. N. Lin, “Microstructural Evolution of Nanocrystalline Diamond Films Due to CH4/Ar/H2 Plasma Post-Treatment Process,” ACS Appl. Mater. Interfaces, vol.7, pp.21844-21851, 2015.
    [25] S. C. Kung, K. C. Hwang, and I. N. Lin, “Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes,” Applied Physics Letters, vol.80, pp.4819-4821, 2002.
    [26] S. I. Jung, S. H. Jo, H. S. Moon, J. M. Kim, D. S. Zang, and C. J. Lee, “Improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties,” The Journal of Physical Chemistry C, vol.111, pp.4175-4179, 2007.
    [27] X. Liu, Y. Wu, Y. Su, B. Zhao, Y. Wang, C. Liu, and Y. Zhang, “Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding,” Physica E, vol.63, pp.165-168, 2014.
    [28] S. Sridhar, C. Tiwary, S. Vinod, J.J. Taha-Tijerina, S. Sridhar, and K. Kalaga, “Field Emission with Ultralow Turn On Voltage from Metal Decorated Carbon Nanotubes,” ACS Nano, vol.8, pp.7763-7770, 2014.
    [29] J. H. Deng, R. T. Zheng, Y. M. Yang, Yong Zhao, and G. A. Cheng, “Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition,” Carbon, vol.50, pp.4732-4737, 2012.
    [30] G. Chen, S. Neupane, W. Li, L. Chen, and J. Zhang, “An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment,” Carbon, vol.52, pp.468-475, 2013.
    [31] J. H. Deng, L. Cheng, F. J. Wang, B. Yu, G. Z. Li, D. J. Li, and G. A. Cheng, “Ultralow field emission from thinned, open-ended, and defected carbon nanotubes by using microwave hydrogen plasma processing,” Applied Surface Science, vol.324, pp.293-299, 2015.
    [32] Z. Hou, B. Cai, H. Liu, and D. Xu, “Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications,” Carbon, vol.46, pp.405-413, 2008.
    [33] M. Hajra, C. E. Hunt, M. Ding, O. Auciello, J. Carlisle, and D. M. Gruen, “Effect of gases on the field emission properties of ultrananocrystalline diamond-coated silicon field emitter arrays,” Journal of Applied Physics, vol.94, pp.4079-4083, 2003.
    [34] J. D. Jarvis, H. L. Andrews, B. K. Choi, J. Davidson, B. Ivanov, W.-P. Kang, C. L. Stewart, Y. M. Wong, and C. A. Brau, “Fabrication of diamond field-emitter-array cathodes for free-electron lasers,” 31st International Free-Electron Laser Conference Proceedings, Liverpool, UK, 23-28, 2009.
    [35] T. Chang, S. Lou, H. Chen, C. Chen, C. Lee, N. Tai, and I. Lin, ” Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultrananocrystalline hybrid diamond materials as cathodes,” Nanoscale, vol.5, pp.7467-7475, 2013.
    [36] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Technol, vol.12, pp.205-216, 2003.
    [37] B. Bahreyni and C. Shafai, “Deep etching of silicon with XeF2 gas,” in Proc. IEEE CCECE, vol.1, pp. 460–464, 2002.
    [38] C. Easter and C. B. O’Neal, “Characterization of High-Pressure XeF2 Vapor-Phase Silicon Etching for MEMS Processing,” Journal of Microelectromechanical Systems, vol.18, pp.1054-1061, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE