研究生: |
蘇麟雯 Su, Lin-Wen |
---|---|
論文名稱: |
碎形維度與疊代函數系統之間的關係及其在股價預測上的應用 Relations Between Fractal Dimensions and Iterated Function Systems and Their Applications in Stock Market Prediction |
指導教授: |
鄭志豪
Teh, Jyh-Haur |
口試委員: |
王偉成
Wei, Cheng-Wang 陳冠宇 Chen, Guan-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 碎形 、股價預測 、維度 、疊代函數系 、測度空間 |
外文關鍵詞: | fractal, stock market prediction, dimension, iterated function system, measure space |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們會先介紹一些碎形幾何中的一些基礎定義,像是豪斯多夫距離、豪斯多夫維度、疊代函數系統及吸引子,並研究一些碎形理論的基礎結果,如:壓縮映射原理、拼貼定理、箱子計數定理、莫蘭定理,我們會用二維數據建造疊代函數系統,並證明疊代函數系統的係數及碎形維度之間的關係,最後藉由以上結果來進行股價預測。
We introduce some basic notions in fractal geometry such as Hausdorff distance, Hausdorff dimension, iterated function system (IFS) and attractor. Some fundamental results such as the contraction mapping principle, the collage theorem, the boxing counting theorem and the Moran theorem are studied. We construct IFS from some given data sets, and show that the coefficients of the IFS are related to the dimensions of the attractor of the IFS. These results are applied to stock market prediction.
[1] 胡家信(2013)。《分形分析引論》。北京:科學出版社。
[2] Micheal F. Barnsley, Fractals Everywhere (third ed), Dover Publication, New
York, (1993).
[3] Edgar. Gerald A, Measure, Topology, and Fractal Geometry, New York,
(2007).
[4] Barnsley. M.F, Elton. J, Hardin. D, Massopust. P, Hidden Variable Fractal
iterated Function, Georgia Institute of Technology Preprint, July 1896, to
appear in SIAM Journal of Analysis.
[5] Kedong. Yin, Hengda. Zhang, Wenbo. Zhang, Qian. Wei, Fractal Analysis of
the Gold Market in China, Journal for Economic Forecasting, Institute for
Economic Forecasting, Vol. 0(3), 144-163, October.
[6] John E.Hutchinson, Fractals And Self Similarity, Indiana University Mathe-
matics Journal 30 (1981),713-747.
[7] Halsey Royden, Patrick M. Fitzpatrick, Real Analysis (Fourth ed), Pearson
Education Asis Limited and China Machine Press, (2010).
[8] D,LA Torre, F. Mendivil, The Monge-Kantovich Metric On Multi-measures
And Self-similar Multi-measures, Mathematics Subject Classication, (2014),
28B,28A33,60B10,28A80.
[9] Rudin, Walter, Principles of mathematical analysis, McGraw-Hill Science En-
gineering, (1976).
[10] D. P.Hardin, P. R. Massopust, The capacity of a class of fractal function,
Common math. Phys, (1986), 455-460.