研究生: |
吳盈宏 |
---|---|
論文名稱: |
三向閘極穿隧電晶體與其非揮發性記憶體之研究 Study of Tri-Gate Tunneling Transistor and Its Flash Memory |
指導教授: | 吳永俊 |
口試委員: |
林育賢
蔡宗鳴 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 穿隧電晶體 、低漏電電流 、非揮發性記憶體 、低次臨界電流 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文的研究主題為三向閘極穿隧電晶體與其非揮發性記憶體,主要應用於低功率消耗的積體電路。論文中使用P-I-N結構的電晶體與記憶體,主要是利用穿隧機制來形成導通電流,使元件可以經由穿隧電流來達到快速開關的特性;由於使用三向閘極的原因,能夠從多個方向影響主動層的電位分布,進而增加閘極對通道的控制能力,使元件特性更好。綜合以上論述,具三向閘極複晶矽奈米線穿隧電晶體與記憶體為一高效能且具有良好開關特性之元件。
由於元件尺寸的微縮且積體電路元件的密度增加,功率消耗的問題變的非常重要。使元件在OFF的狀態下漏電電流可以減少,如此可以延長元件的使用時間,增加其效能。此P-I-N穿隧電晶體與記憶體是利用穿隧電流來達到元件導通的機制,跟一般常用MOSFET的電流導通機制不同,MOSFET的次臨界斜率(SS)會受到(kT/q)×ln10的限制,而此P-I-N穿隧電晶體與記憶體則不會受到此項限制。所以次臨界斜率(SS)可以低於60mV/decade,可以達到快速開關的特性。
在論文列出此結構的各項指標,以及實驗數據皆顯示出具三向閘極穿隧電晶體與記憶體具有應用於實際產品的高度價值,同時擁有成為下一世代元件的潛力。
[1.1] G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, pp. 82-85, 1965.
[1.2] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3 ed.: John
Wiley & Sons, INC., 2006.
[1.3] International Technology Roadmap for Semiconductors, “2008 Update”, http://www.itrs.net, 2008.
[1.4]Y. Taur, and T. H. Ning, “Fundamentials of Modern VLSI Device, ” 1 st edition,Cambridge University Press, New York, 1998, pp. 171.
[1.5] Chenming Hu, “Modren SemiconductorDevices for Intergrated Circuits”, Pearson Education Press, 2010, pp. 284-287.
[1.6] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. King. Liu., “Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007.
[1.7] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and <<60mV/dec subthreshold slope,” Tech. Dig. –Int. Electron Devices Meet., 2008, pp. 947-949.
[1.8] M. H. Juang, Y. S. Peng, D. C. Shye, J. L. Wang, C. C. Hwang, S. L. Jang, ”Submicron-meter tunneling field-effect poly-Si thin-film transistors with a thinned channel layer,” Microelectronic Engineering, vol. 88, pp. 32-35, Aug. 2010.
[1.9] K. Boucart and A. M. Ionescu, “Double-Gate Tunnel FET With High-κ Gate Dielectric,” IEEE Trans. Electron Devices, vol. 54, No. 7, pp. 1725-1733, July 2007.
[1.10] A. S. Verhulst, W. G. Vandenberghe, K. Maex, S. De Gendt, M. M. Heyns, and G. Groeseneken, “Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates,” IEEE Electron Device Lett., vol. 29, pp. 1398 – 1401, Dec. 2008.
[1.11] A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and Guido Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys., vol. 107, pp. 024518, Jan. 2010.
[2.1] C. Hu, D.l Chou, P. Patel, and A. Bowonder,” Green Transistor -A VDD Scaling Path for Future Low Power ICs,” in Proc. Int. Symp. VLSI-TSA, 2008, pp. 14–15.
[2.2] L. Esaki, “New Phenomenon in Narrow Germanium p - n Junctions”, Physical Review, vol. 109, 1958, pp. 603-604
[2.3] K. Boucart and A. M. Ionescu, “Double-Gate Tunnel FET With High-κ Gate Dielectric,” IEEE Trans. Electron Devices, vol. 54, No. 7, pp. 1725-1733, July 2007.
[2.4] S. M. Sze and Kwon K. Ng, “Physics of Semiconductor Devices,” 3 rd ed., New York, Wiley, 2007, pp. 423.
[2.5] J. Knoch, “Optimizing Tunnel FET Performance – Impact of Device Structure, Transistor Dimensions and Choice of Material,” in Proc. Int. Symp. VLSI-TSA, 2009, pp. 45–46.
[2.6] S. M. Sze and Kwon K. Ng, “Physics of Semiconductor Devices,” 3 rd ed., New York, Wiley, 2007, pp. 424.
[2.7] Q. Zjang, W. Zhao, A. Seabaugh, “Low-Subthreshold-Swing Tunnel Transistors,” IEEE Electron Device Lett. vol. 27, No. 4, pp. 297-300, April 2006.
[2.8] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007.
[2.9] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, Vol. 85, pp. 1248, 1997.
[2.10] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application,” C. Hu, Ed. New York: IEEE Press, ch. 3, p.59, 1991.
[2.11] M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2,” Appl. Phys. Lett., Vol. 40, pp. 278-283, 1969.
[2.12] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007.
[2.13] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Viscontio, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, pp.489,2003.
[2.14] J. J. Lee, S. H. Lee, H. Chae, “Rentention Reliability of FinFET SONOS Device,” IEEE 44th Annual International Reliability Physics Symposium, pp. 530, San Jose, 2006.
[2.15] Shun-Cheng Tien, National Tsing Hua University Department of Engineering and System Science Master’s Thesis, “Study of Poly-Si Channel TANOS Flash Memory with Silicon Nanocrystals as Charge-Trapping Layer”,2011.
[2.16] Zih-Yun Tang, National Tsing Hua University Department of Engineering and System Science Master’s Thesis,” Gate-All-Around Poly-Silicon Nanowires Flash Memory with Silicon Nanocrystals”,2011.
[2.17] Christian Philipp Sandow, aus Göttingen, “Modeling, Fabrication and characterization of Silicon tunnel Field -effect transistors”,2010.
[4.1] Omor Faruk Shoron, Saima Afroz Siddiqui, Ahmad Zubair, "A simple physically based model of temperature effect on drain current for nanoscale TFET," Proceedings of the EDSSC, 2010, pp. 1- 4.
[6.1] A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and Guido Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys., vol. 107, pp. 024518, Jan. 2010.
[6.2] N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications,” IEEE Trans. Electron Devices, vol. 55, No. 11, pp. 3107-3118, Nov. 2008.
[6.3] F. Mayer, C. Le Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance,” Tech. Dig. –Int. Electron Devices Meet., 2008, pp. 163-166.
[6.4] J. T. Smith, C. Sandow, S. Das, R. A. Minamisawa, S. Mantl, and J. Appenzeller, “Silicon Nanowire Tunneling Field-Effect Transistor Arrays: Improving Subthreshold Performance Using Excimer Laser Annealing,” IEEE Trans. Electron Devices, vol. 58, No. 7, pp. 1822-1829, July 2011.
[6.5] Kathy Boucart and Adrian Mihai Ionescu, Member, IEEE,” Double-Gate Tunnel FET With High-κ Gate Dielectric”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 7, JULY 2007.
[6.6] K. Jeon, W. Y. Loh, P. Patel, C. T. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King Liu, “Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing,” in VLSI Symp. Tech. Dig., 2010, pp. 121–122.
[6.7] S. H. Kim, H. Kam, C. Hu, T. J. King Liu, ”Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF,“ in VLSI Symp. Tech. Dig., 2009, pp. 178–179.
[6.8] J. Knoch, J. Appenzeller, “Tunneling phenomena in carbon nanotube field-effect transistors,” Phys. Stat. Sol. (a), vol. 205, No. 4, pp. 679–694, March 2008.