簡易檢索 / 詳目顯示

研究生: 楊智淵
Yang, Jhih-Yuan
論文名稱: 複合表面之微液珠傳輸晶片設計及其混合機制研究
Design of micro-droplet transport chip and study of droplets mixing mechanism on the hybrid-textured surface
指導教授: 楊鏡堂
Yang, Jing-Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 144
中文關鍵詞: 液珠傳輸混合表面張力微結構
外文關鍵詞: droplet, manipulation, mixing, surface tension, micro structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別透過表面微結構設計以及生化分子自我組裝單層膜(SAM)方式,使複合表面具有親疏水性梯度(wettability gradient),當液珠位於親疏水性梯度介面上時,將具有自發性的移動能力,能夠從疏水端傳輸到親水端,以進行傳輸與混合。本研究分別透過實驗以及計算流體力學模擬分析液珠傳輸及混合過程中的流場特徵行為,並研究不同液珠尺寸、黏滯係數以及表面張力對於混合現象及混合時間的影響。
    液珠混合現象的定量方式為利用染料法,藉由高速攝影機擷取影像,並進行混合之計算,以討論其流場行為。另外透過計算流體力學軟體CFD-RC成功模擬液珠在親疏水性梯度表面驅動下之流場行為,與實驗結果進行互相驗證,並利用環流量的計算量化液珠之循環效果。
    本研究之另一重點為工程方面之應用,其一為跨越親疏水端介面之被動式液珠傳送裝置結合表面微結構設計以及生化分子自我組裝單層膜之技術,成功開發出一種跨越親疏水端介面之被動式液珠傳送裝置,突破以往只單用親水端或疏水端傳輸的距離限制;其二為利用蒸散作用及表面材質快速成型之方法,利用液珠具有因表面張力而其外型將自我調控為一凸出球狀型結構之特性,並透過蒸散作用的影響進而調控此半球型結構之曲率及外型大小。
    本文研究成果可應用於生醫晶片當中之數位微流體系統,提高液珠傳輸速率與混合效率,藉由生化液珠所攜帶之檢體及試劑的快速混合,以達到降低晶片檢測時間之目的,例如DNA雜交 (hybridization)以及疾病快速篩檢。


    目 錄 摘 要 i Abstract ii 致 謝 iii 目 錄 v 圖表目錄 x 符號說明 xvi 第一章 前 言 1 1-1 研究背景 1 1-2 研究動機與願景 2 第二章 文獻回顧 6 2-1 液珠的基礎理論建立 7 2-1.1 尺寸效應(scaling law) 7 2-1.2 表面張力與表面能 8 2-1.3 液珠之本質接觸角 9 2-1.4 前進角與後退角 10 2-1.5 遲滯效應 10 2-2 微液珠的傳輸與操控技術 11 2-2.1 熱能驅動法 12 2-2.2 表面化學能驅動法 13 2-2.3 生化分子自組裝法 14 2-2.4 電能驅動法 16 2-2.5 光能驅動法 17 2-2.6 表面微結構驅動法 17 2-3 微液珠的動態傳輸及混合機制 18 2-3.1 液珠在傳輸時的內部流場行為 18 2-3.2 利用EWOD方式進行液珠的主動式混合 20 2-3.3 液珠碰撞理論 21 第三章 研究方法 26 3-1 液珠的移動行為 28 3-1.1 液珠趨動力來源 28 3-1.1.1 遲滯效應 29 3-1.1.2 表面材質 30 3-1.1.3 液珠與固體表面的接觸模式 31 3-1.1.4 液珠的表面自由能 33 3-1.2 親疏水性梯度表面製作 35 3-1.2.1 表面微結構之尺寸設計 36 3-1.2.2 製程設計 40 3-1.2.2.1 微結構表面製程 41 3-1.2.2.2 生化分子自我組裝單層膜 43 3-1.2.2.3 結合表面微結構及SAM方式表面改質 47 3-2 液珠觀測方法建立 49 3-2.1 液珠動態行為觀測 49 3-2.2 液珠混合時間及混合指標計算方式 51 3-2.3 液珠之蒸發現象討論 55 3-3 液珠混合機制討論 56 3-3.1 液珠混合實驗設計 56 3-3.1.2 液珠尺寸對於混合的影響 58 3-3.1.3 黏滯度及表面張力對於混合的影響 59 3-3.2 液珠混合行為的數值模擬 62 3-3.2.1 數值套裝模擬軟體 CFD-RC 63 3-3.2.2 流體動力學控制方程式 64 3-3.2.3 VOF模組介紹 65 3-3.2.4 網格獨立測試 66 第四章 結果與討論 68 4-1 液珠傳輸與混合實驗分析 69 4-1.1 微結構親疏水梯度設計 69 4-1.2 液珠傳輸與混合實驗 72 4-1.2.1 液珠傳輸速度 72 4-1.2.2 表面輪廓動態變化分析 73 4-1.2.2.1 表面張力對於液珠混合輪廓變化之影響 76 4-1.2.2.2 液珠體積對於液珠混合輪廓變化之影響 79 4-1.2.2.3 黏滯度對於液珠混合輪廓變化之影響 81 4-1.2.3 液珠混合染料實驗 82 4-1.2.3.1 液珠混合機制討論 83 4-1.2.3.2 黏滯力對於混合指標之影響 86 4-1.2.3.3 液珠尺寸對於混合指標之影響 88 4-2 液珠傳輸與混合數值模擬 90 4-2.1 液珠傳輸行為數值模擬 92 4-2.1.1 壁面效應測試 93 4-2.1.2 液珠傳輸行為研究 100 4-2.1.2.1 x-z平面液珠傳輸行為 100 4-2.1.2.2 x-y平面液珠傳輸行為 106 4-2.1.2.3 y-z平面液珠傳輸行為 108 4-2.1.3 黏滯度對於液珠傳輸之影響 110 4-2.2 液珠混合數值模擬 113 4-3 液珠之工程整合應用 115 4-3.1 跨越親疏水端介面之被動式液珠傳送裝置 115 4-3.2 液珠蒸發現象分析 116 4-3.2.1 親水性表面 117 4-3.2.2 疏水性表面 118 4-3.2.3 液珠蒸發現象之應用方法 119 第五章 結論與未來展望 129 5-1 結論 129 5-2 本文貢獻 132 5-3 未來展望 133 5-4 甘梯圖 135 第六章 參考文獻 136 作 者 簡 歷 142

    Albenge, O., Lacabanne, C., Beguin, J. D., Koenen, A., and Evo, C., 2002, “Experimental procedure to measure the blocking energy of liquid on smooth hydrophobic surfaces,” Langmuir, Vol. 18, pp. 8929-8932.
    Cho, S. K., Moon, H., and Kim, C. J., 2003, “Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80.
    Darhuber, A. A., and Valentino, J. P., 2003, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879.
    Faucheux, N., Schweiss, R., Lutzow, K., Werner, C., and Groth, T., 2004, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials, Vol. 25, pp. 2721-2730.
    Fowler, J., Moon, H., and Kim, C. J., “Enhancement of mixing by droplet-based microfluidics,” Proceedings of IEEE Conf. on MEMS, Las Vegas, NV, Jan. 2002, pp. 97-100.
    Glockner, P. S., and Naterer, G. F., 2005, “Thermocapillary control of microfluidic transport with a stationary cyclic heat source,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 2216-2229.
    Ichimura, K., Oh, S. K., and Nakagawa, M., 2000, “Light-driven motion of liquids on a photoresponsive surface,” Science, Vol. 288, pp. 1624-1626.
    Jiang, Y. J., Umemura, and A., Law, C. K., “An experimental on the collision behavior of hydrocarbon droplets,” Journal of Fluid Mechanisms, Vol. 234, pp. 171-190.
    King, C., Walsh, E., and Grimes, R., 2007, “PIV measurements of flow within plugs in a microchannel,” Microfluid and Nanofluid, Vol. 3, pp. 463-472.
    Kmieling, T., Lang, W., and Benecke, W., 2006, “Gas phase hydrophobisation of MEMS silicon structures with self-assembling monolayers for avoiding in-use sticking,” Sensors and Actuators A, Vol. 126, pp. 13-17.
    Kushmerick, J. G., Hankins, M. G., de Boer, M. B., Clews, P. J., Carpick, R. W., and Bunker, B. C., 2001, “The influence of coating structure on micromachine stiction,” Tribology Letters, Vol. 10, No. 1-2, pp. 103-108.
    Law, T. B., and List, R., 1982, “Collision, coalescence and breakup of raindrops. Part Ⅱ:Parameterization of fragment size distributions,” American Meteorological Society, Vol. 39, pp. 1607-1618.
    Lee, S. J., and Lee, S. Y., 2004, “Micro total analysis system (μ-TAS) in biotechnology,” Applied Microbiology Biotechnology, Vol. 64, pp. 289-299.
    Lu, H. W., Bottausci, F., Fowler, J. D., Bertozzi, A. L., Meinhart, C., and Kim, C. J., 2008, “A study of EWOD-driven droplets by PIV investigation,” Lab on a Chip, Vol. 8, pp. 451-461.
    Medintz, I. L., Berti, L., and Emrich, C. A., 2001, “Genotyping energy-transfer-cassette-labeled short-tandem-repeat amplicons with capillary array electrophoresis microchannel plates,” Clinical Chemistry, Vol. 47, pp. 1614-1621.
    Orime, M., 1997, “Experiments on droplet collisions, bounce, coalescence and distribution,” Progress in Energy Combustion Science, Vol. 23, pp. 65-79.
    Paik, P., Pamula, V. K., Pollack, M. G., and Fair, R. B., 2003, “Electrowetting-based droplet mixers for microfluidic systems,” Lab on a Chip, Vol. 3, pp. 28-33.
    Paik, P., Pamula, M. G., and Fair, R. B., 2003, “Rapid droplet mixers for digital microfluidic systems,” Lab on a Chip, Vol. 3, pp. 253-259.
    Qian, J., and Law, C. K., 1997, “Regimes of coalescence and separation in droplet collision,” Journal of Fluid Mechanics, Vol. 331, pp. 59-80.
    Sarrazin, F., Loubie`re, K., Prat, L., and Gourdon, C., 2006, “Experimental and numerical study of droplets hydrodynamics in microchannels,” AIChE Journal, Vol. 52, No. 12, pp. 4061-4070.
    Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, and D. J., Adrian, R. J., 1998, “A particle image velocimetry system for microfluidics,” Experiments in Fluids, Vol. 25, pp. 316-319.
    Schwesinger, N., Frank, T., and Wurmus, H., 1996, “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 99-102.
    Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J., and Ismagiolv, R. F., 2003, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Applied Physics Letters, Vol 83, pp. 4664-4666.
    Reyes, D. R., Iossifidis, D., Auroux, P., and Manz, A., 2002, “Micro total analysis systems. 1. Introduction, theory, and technology,” Analytical Chemistry, Vol. 74, pp. 2623-2636.
    Tretinnikovt, O. N., and Ikada, T., 1994, “Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method,” Langmuir, Vol. 10, pp. 1606-1614.
    Tseng, Y. T., Tseng, F. G., Chen, and Y. F., Chieng, C. C., 2004, “Fundamental studies on micro-droplet movement by Marangoni and capillary effects,” Sensors and Actuators A, Vol. 114, pp. 292-301.
    Whlepdale, D. M., and List, R., 1971, “The coalescence in raindrop growth,” Journal of Geophysics Research, Vol. 76, No.12, pp. 2386-2856.
    Yang, J. T., Chen, C. Y., Yang, T. H., and Chen, A. C., 2007, “Microfluidics device for separation and transportation,” US Patent, Pub. No.: US 2007/0034270 A1.
    Yang, J. T., Chen, J. H., Huang, K. J., and Yeh, A. J., 2006, “Droplet manipulation on a hydrophobic textured surface with roughened patterns,” Journal of Microelectromechanical Systems, Vol. 15, pp. 697-707.
    Yang, J. T., Yang, Z. H., Chen, C. Y., and Yao, D. J., 2008, “Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces,” Langmuir, Vol. 24, pp. 9889-9897.
    Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, 2009, "Investigation and application of an artificially hybrid-structured surface with ultrahydrophobic and anti-Sticking characters," Journal of Micromechanics and Microengineering (accepted).
    J. T. Yang,* Y. H. Lai, M. H. Hsu, and D. B. Hsieh, 2009, "A SAM Microchip for Manipulating Droplets across Hydrophobic to Hydrophilic Surfaces," Journal of Microelectromechanical Systems (to be submitted).
    Yang, R. J., Fu, L. M., and Lin, Y., C., 2001, “Electroosmotic flow in microchannels,” Journal of Colloid and Interface Science, Vol. 239, pp. 98-105.
    Yang, Z. H., Yang, J. Y., Yang, J. T., and Lai, Y. H., “Mixing of colliding microdroplets on a digital-microfluidic transport device with superhydrophobic surfaces,” Microfluidics and Nanofluidics (to be submitted).
    Yasuda, T., Suzuki, K., and Shimoyama, I., 2003, “Automatic transportation of a droplet on a wettability gradient Surface,” the 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 1129-1132.
    Yu, X., Wang, Z., Jiang, Y., and Zhang, X., 2006, “Surface gradient material: from superhydrophobicity to superhydrophilicity,” Langmuir, Vol. 22, pp. 4483-4486.
    陳佳惠,2004,斥水性奈微結構表面之液珠驅動與操控, 國立清華大學動力機械工程學系碩士論文。
    楊宗翰,2007, 微液珠操控與生化奈微表面之傳輸元件研發,清華大學動力機械工程學系博士論文計畫書。
    邱朝陽,2008, 分子自組裝單層膜與奈微複合結構表面之液珠操控, 清華大學動力機械工程學系碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE