簡易檢索 / 詳目顯示

研究生: 陳佳如
Chia-Ju Chen
論文名稱: 獨立成份方法分析磁振造影資料 :個別到群組的數據分析
Data analysis on MRI data using ICA :from single to group dataset
指導教授: 莊克士
Keh-Shih Chuang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 114
中文關鍵詞: 獨立成份分析磁振造影資料分析
外文關鍵詞: Independent Component Analysis, Magnetic Resonance Imaging, Data Analysis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 獨立成份分析法(Independent Component Analysis, ICA)把混合的訊號分解為各自獨立的訊號源,常被用在MRI,處理訊號分離或功能性定位的研究。在目前MRI 的資料處理中,感興趣的訊號皆可視為互為獨立性,例如,在血流灌注的研究(perfusion MRI),不同的組織所發生之信號各有其特性,且在空間上的貢獻各自獨立,ICA利用這個特性來做為組織分割的依據,將受局部磁場不均影響的灰質、白質以及藉於微血管與血管間的間質組織的區域分割出來;而對於功能性的MRI資料,各種刺激所引起的 Blood-Oxygen-Level-Dependence (BOLD)訊號源在空間的貢獻亦為獨立,因此可將受刺激影響的區域分割出來,做為功能上位置的確認。

    決定訊號源的個數在資料處理中,可以有效地把需處理的資料量減縮,達到節省電腦運算容量及加快運算速度,然而,在傳統的評估方法(例如, AIC、BIC、MDL),群組間與群組內的變異性往往會造成高估的現象,而AR(1) 曲線擬合(curve fitting)的方式能較保守地估計訊號源的個數,較不受傳統方法對雜訊假設為常態分佈的限制。在本論文中,用ICA來分析一系列的MRI資料(從單一資料處理,單一群組到多群組資料),為因應資料型態的不同,ICA技術的發展也隨之改進:第一部份為將ICA應用在血流灌注的研究,找出受顯影劑影響的血管周圍組織區域;第二部份為將群組 ICA應用到單一群組的藥物濫用研究,增加對藥物腦功能的了解並跟傳統血流動力模組的結果做比較;第三部份是為因應多群組資料的處理,提出以AR(1)模組為概念的群組式訊號源估計法來進行訊號源個數的評估與探討。第四部份是把多群組ICA結合群組式訊號源估計法的技術,應用到腦功能預設系統(Brain Default System)的研究,探討人類在休息狀態(Resting State)時,腦功能的進行在時間軸上的一致性。

    初步結果顯示,利用ICA來分割血管周圍的組織訊號,以此訊號來決定的動脈輸入函數(Arterial Input Function, AIF)可以幫助量化血流灌注的生理參數;再則,藉由ICA非模組式的運算方式,運用到先驗知識不足的藥物濫用腦功能上,可以幫助傳統建模的困難以及提供額外的資訊;同樣地,對於龐大而且沒有剌激輔助實驗的腦預設系統,基本腦功能的進行縱使在休息的狀態也穩定地存在著,ICA搭配資料量縮減的方式能夠避免群組間及群組內的變異所造成的誤差,達到客觀分析及立竿見影的優點。

    經過這一系列有系統的研究與探討,對於ICA的應用廣度從單一個體資料處理到單(多)群組的資料處理可以落實,研究的結果也從過去的研究中得到驗證。未來的工作方向可以著重在將這方向的研究推廣到腦功能連結圖譜(Brain Connectivity),以及將影像空間的訊息加入ICA中,提昇ICA在訊號分解上的效率。


    Independent component analysis (ICA) decomposes mixing signal into their constituent components and is commonly used in the research of signal segmentation and functional localization in magnetic resonance imaging (MRI) field. Recently, analysis on MRI data show that the interesting source signals attributing to brain activity can be regarded as independent. In perfusion study, ICA utilizes the temporal-spatial independence to segment the tissue into gray, white matter and the tissue surrounding vessel which is affected by the local field inhomogeneity during the contrast agent passage. Besides the perfusion study, ICA is also applied to locate the brain activity region by the level of blood-oxygen dependence under task delivery in function study.

    Determination of the data dimension in data analysis could reduce the computer loading and increase the computation speed. However, the traditional estimation methods (i.e. Akaike information criterion (AIC), Bayesian information criterion (BIC) and minimum description length (MDL)) over-estimate the dimension number due to the variation of between- and within-subject. This over-estimated situation can be decreased by a conservative method: the fitting of auto-regression model with first order, acronymic in autoregressive model of order one (AR (1)). It estimates the dimension of data by fitting the noise part of data because it assumes that the noise contribution to data is colored. In this work, ICA combined and the extended AR(1) method is applied to a series of MRI data from single dataset, single-group dataset to multi-group dataset. In the first part, ICA is used to segment the tissue around vessel in perfusion MRI study. In the second part, extended ICA is applied to single group dataset for drug abuse investigation. The resultant performance is compared with the traditional model based method. In the third part, an extended AR(1) method is used to assess the data dimension in order to handle the analysis of a giant dataset with multi-groups. In the final part, an application to the brain default system is involved to study the brain function consistency across time series.

    Preliminary result showed that the ICA performed excellent signal decomposition on the data. The partial volume problem for the region around the vessel is alleviated by ICA and a better arterial input function (AIF) for quantifying physiological parameters can be achieved. Subsequently, ICA utilize a non-parametric model of drug effect as compared with the traditional parametric model and it also provides extra information for the drug study such as behavior task, physiology test during scan delivery. With the same concept, ICA also helps the analysis on the brain function under resting state. The results showed that the brain default function is consistent existing across time frame and it is also exposed that ICA combined with our home-made dimension estimation method could alleviate the overestimation of dimension caused by the variation of within- and between-subject.

    In conclusion, ICA is a powerful tool in analyzing data. The relative research such as brain connectivity under brain resting state and the extra information involved to ICA is worth investigation and development.

    Abstract ⅰ 摘 要 ⅲ Dedication ⅴ Contents ⅶ List of Figures ⅹ List of Tables CHAPTER 0. Preface -------------------------------------------------- 1 Overview of Dissertation --------------------------------------- 4 CHAPTER 1. Introduction ----------------------------------- 6 1-1. General Concept ------------------------------------------------- 6 1-2. Processing in ICA ----------------------------------------------- 7 1-2-1. Preprocessing Part ----------------------------------------------- 7 1-2-2. Searching of Independent Components ---------------------- 8 1-3. The Matrix Calculation of group ICA across Multiple Subjects ---------------------------------------------------------- 9 1-4. The Matrix Calculation of group ICA across Multiple Subjects and Sessions ------------------------------------------ 11 1-4-1. Concatenation and Reduction in gICA ------------------------ 11 1-4-2. Backward Reconstruction from the gICA Results ----------- 12 CHAPTER 2. Individual Dataset Analysis: DSC-MRI -- 16 2-1. Background ------------------------------------------------------- 16 2-2. Motivation -------------------------------------------------------- 18 2-3. Material and Method -------------------------------------------- 18 2-3-1. Data Acquisition ------------------------------------------------- 18 2-3-2. Data Processing -------------------------------------------------- 18 2-4. Results ------------------------------------------------------------ 21 2-5. Discussion and Conclusions ----------------------------------- 23 CHAPTER 3. Group Dataset Analysis across Subjects: pharmacological MRI ----------------------- 32 3-1. Background ------------------------------------------------------- 32 3-2. Motivation -------------------------------------------------------- 34 3-3. Material and Methods ------------------------------------------- 35 3-3-1. Data Acquisition ------------------------------------------------- 35 3-3-2. Simulation Experiment ----------------------------------------- 35 3-3-3. ANOVA Analysis ------------------------------------------------ 37 3-3-4. Group ICA -------------------------------------------------------- 38 3-4. Results ------------------------------------------------------------ 40 3-4-1. Simulation Results ---------------------------------------------- 40 3-4-2. Clinical Results -------------------------------------------------- 41 3-5. Discussion and Conclusions ----------------------------------- 42 CHAPTER 4. Order Selection of Data Dimension ------- 56 4-1. Background ------------------------------------------------------- 56 4-2. Motivation -------------------------------------------------------- 57 4-3. Material and Methods ------------------------------------------- 58 4-3-1. Data Acquisition ------------------------------------------------- 58 4-3-2. Computer Simulation ------------------------------------------- 59 4-3-3. PCA Spectrum and AR(1) Fitting ----------------------------- 60 4-3-4. Data Reduction at Multiple Levels ---------------------------- 61 4-3-5. Noise Blurring Technique -------------------------------------- 62 4-4. Results ------------------------------------------------------------ 62 4-4-1. Simulated Group data ------------------------------------------- 62 4-4-2. Individual Datasets ---------------------------------------------- 63 4-4-3. Group Datasets -------------------------------------------------- 64 4-4-4. Multiple Level Groups ----------------------------------------- 65 4-5. Discussion and Conclusions ----------------------------------- 66 CHAPTER 5. Group Dataset Analysis across Subjects and Sessions: Resting Sate of Brain ------- 75 5-1. Background ------------------------------------------------------- 75 5-2. Motivation -------------------------------------------------------- 76 5-3. Material and Methods ------------------------------------------- 76 5-3-1. Data Acquisition ------------------------------------------------- 76 5-3-2. Group ICA -------------------------------------------------------- 77 5-3-3. Consistency Analysis ------------------------------------------- 78 5-4. Results ------------------------------------------------------------ 79 5-4-1. Physiologically Recognizable Component Maps ----------- 79 5-4-2. Consistency of the Component Maps across Sessions ----- 80 5-5. Discussion and Conclusions ----------------------------------- 81 Appendix A. --------------------------------------------------------------------- 93 A-1. Concatenation and Reduction in gICA ----------------------- 93 A-2. Backward Reconstruction from the gICA Results ---------- 94 Appendix B. Supplemental Material ------------------------------------------ 94 CHAPTER 6. Conclusions and Future Works ------------ 101 Acknowledgements------------------------------------------------------------ 103 References ------------------------------------------------------------ 104

    1.Akaike, H., 1974. A new look at statistical model identification. IEEE Trans. Automat. Contr. AC 19:716-723

    2.Anand,A., Li,Y., Wang,Y., Wu,J., Gao,S., Bukhari,L., Mathews,V.P., Kalnin,A., and Lowe,M.J., Antidepressant effect on connectivity of the mood-regulating circuit: an FMRI study, Neuropsychopharmacology, 30 (2005) 1334-1344.

    3.Andersson, J.L.R., Hutton, C., Ashburner J., Turner, R., and Friston, K., 2001. Modeling geometric deformations in EPI time series. NeuroImage 13, 903-919.

    4.Aron,A.R., Gluck,M.A., and Poldrack,R.A., Long-term test-retest reliability of functional MRI in a classification learning task, Neuroimage, 29 (2006) 1000-1006.

    5.Beckmann, C.F., Noble, J., Smith, S., 2001. Investigating the intrinsic dimensionality of fMRI data for ICA. 7th Int. Conf. Functional Mapping of the Human Brain, Brighton, U.K.

    6.Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., 2005. Investigations into resting-state connectivity using independent component analysis. Philos.Trans.R.Soc.Lond B Biol.Sci. 360, 1001-1013.

    7.Beckmann, C.F., Smith, S.M., 2004. Probabililistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. On Medical Imaging 23, 137-152.

    8.Berns, G.S., McClure, S.M., Pagnoni, G., Montague, P.R., 2001. Predictability modulates human brain response to reward. J. Neurosci. 21(8), 2793-2798.

    9.Bell,A.J. and Sejnowski,T.J., An Information Maximization Approach to Blind Separation and Blind Deconvolution, Neural Computation, 7 (1995) 1129-1159.

    10.Biswal,B., Yetkin,F.Z., Haughton,V.M., and Hyde,J.S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn Reson. Med., 34 (1995) 537-541.

    11.Biswal,B., Yetkin,F.Z., Haughton,V.M., and Hyde,J.S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn Reson. Med., 34 (1995) 537-541.

    12.Bloom, A.S., Hoffmann, R.G., Fuller, S.A., Pankiewicz, J., Harsch, H.H., Stein, E.A., 1999. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum. Brain Mapp. 8, 235-244.

    13.Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995; 34:555-566.

    14.Breiter, H.C., Gollub, R.L., Weisskoff, R.M., Kennedy, D.N., Makris N., Berke J.D., Goodman, J.M., Kantor, H.L., Gastfriend, D.R., Riorden, J.P., Mathew, R.T., Rosen, B.R., Hyman, S.E., 1997. Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591-611.

    15.Calhoun VD, Adali T, Pearlson GD, and Pekar JJ. A method for making group inferences form functional MRI data using independent component analysis. Hum Brain Map 2001; 14:140-151.

    16.Calhoun,V.D., AdalI,T., and Pekar,J.J., A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks, Magnetic Resonance Imaging, 22 (2004) 1181-1191.

    17.Calhoun, V.D., Pekar, J.J., and Pearlson, G.D., 2004. Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychopharmacology 29, 2097-2107.

    18.Carroll TJ, Haughton VM, Rowley HA, and Cordes D. Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. AJNR 2002; 23:1007-1012.

    19.Carroll TJ, Rowley HA, and Haughton VM. Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 2003; 227:593-600.

    20.Chen, N.K., and Wyrwicz, A.M. 1999. Correction for EPI distortions using multi-echo gradient-echo imaging. Magn. Reson. Med. 41: 1206-1213.

    21.Chen, S., Ross, T.J., Chuang, K.-S., Stein, E.A., Yang, Y., Zhan, W., 2007a. Dimensionality estimation for group fMRI data reduction at multiple levels. SPIE symposium on medical imaging, San Diego, CA, pp. 6511-41.

    22.Chen, S., Yang, Y., Zhan, W., Stein, E.A., Myers, C.S., Heishman, S.J., Chuang, K.S., Ross, T.J., 2007b. Group independent component analysis reveals consistent resting-state networks across multiple sessions. 15th International Society for Magnetic Resonance in Medicine, Berlin, Germany, May. p.1987.

    23.Chen,S., Ross,T.J., Chuang,K.-S., Stein,E.A., Yang,Y., and Zhan,W. Dimensionality estimation for group fMRI data reduction at multiple levels. 6511-41. 2007. San Diego, CA, SPIE symposium on medical imaging.

    24.Comon,P., Independent Component Analysis, A New Concept, Signal Processing, 36 (1994) 287-314.

    25.Cordes,D., Haughton,V.M., Arfanakis,K., Wendt,G.J., Turski,P.A., Moritz,C.H., Quigley,M.A., and Meyerand,M.E., Mapping functionally related regions of brain with functional connectivity MR imaging, AJNR Am. J. Neuroradiol., 21 (2000) 1636-1644.

    26.Cordes, D., Nandy, R.R., 2006. Estimation of the intrinsic dimensionality of fMRI data. Neuroimage 29, 145-154.

    27.Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173.

    28.Dagli,M.S., Ingeholm,J.E., and Haxby,J.V., Localization of Cardiac-Induced Signal Change in fMRI, Neuroimage, 9 (1999) 407-415.

    29.Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects. Proc.Natl.Acad.Sci.U.S.A 103, 13848-13853.

    30.Dirckx, S.G., Risinger, R.C., Ross, T.J., Li, Z., Li, S.J., Stein, E.A., 2003. Comparing iv methylphenidate and cocaine in the human brain using fMRI. 9th International Conference on Functional Mapping of the Human Brain, New York, June.

    31.Dodel S, Herrmann JM, and Geisel T. Localization of brain activity-blind separation for fMRI data. NeuroComput 2000; 32-33:701-708.

    32.Duhamel G, Schlaug G, and Alsop DC. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison f physical simulations with in vivo results. Magn Reson Med 2006; 55:514-523.

    33.Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, and Salle FD. Real-time independent component analysis of fMRI time-series. NeuroImage 2003; 20:2209-2224.

    34.Fernando C, Morten M, and Lars KH. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004; 52:789-797.

    35.Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Salle FD, and Goebel R. Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 2002; 49:241-254.

    36.Fox,M.D., Snyder,A.Z., Vincent,J.L., Corbetta,M., Van Essen,D.C., and Raichle,M.E., The human brain is intrinsically organized into dynamic, anticorrelated functional networks, Proc. Natl. Acad. Sci. U. S. A, 102 (2005) 9673-9678.

    37.Fox,M.D., Snyder,A.Z., Vincent,J.L., Corbetta,M., Van Essen,D.C., and Raichle,M.E., The human brain is intrinsically organized into dynamic, anticorrelated functional networks, Proc. Natl. Acad. Sci. U. S. A, 102 (2005) 9673-9678.

    38.Friston, K.J., Holmes, A., Poline, J., Grasby, P., Williams, S., Frackowiak, R., Turner, R., 1995. Analysis of fMRI time series revisited. NeuroImage 2, 45-53.

    39.Fukunaga,M., Horovitz,S.G., van Gelderen,P., de Zwart,J.A., Jansma,J.M., Ikonomidou,V.N., Chu,R., Deckers,R.H., Leopold,D.A., and Duyn,J.H., Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages, Magn Reson. Imaging, 24 (2006) 979-992.

    40.Gozzi, A, Ceolin, L., Schwarz, A.J., Reese, T., Crestan, V., Bertani, S., Turrini, G., et al., 2005. Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide in the anaesthetized rat. J. Neurosci. Methods 142, 115-124.

    41.Goeders, N.E. and Smith, J.E., 1983. Cortical dopaminergic involvement in cocaine reinforcement. Science 221, 773-775.

    42.Grant, S., London, E.D., Newlin, D.B., Villemagne, V.L., Liu, X., Contoreggi, C., Phillips, R.L., Kimes, A.S., and Margolin, A., 1996. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 93, 12040-12045.

    43.Greicius,M.D., Krasnow,B., Reiss,A.L., and Menon,V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. U. S. A, 100 (2003) 253-258.

    44.Gusnard,D.A. and Raichle,M.E., Searching for a baseline: functional imaging and the resting human brain, Nat. Rev. Neurosci., 2 (2001) 685-694.

    45.Hansen, L.K., Larsen, J., Nielsen, F.A., Strother, S.C., Rostru, E., Savoy, R., Lange, N., Sidtis, J., Svarer, C., Parlson, O.B., 1999. Generalizable patterns in neuroimaging: how many principal complnents? NeruoImage 9, 534-544.

    46.Hewitt, K.N., Shah, Y.B., Prior, M.J.W., Morris, P.G., Hollis, C.P., Fone K.C.F., Marsden, C.A., 2005. Behavioural and pharmacological magnetic resonance imaging assessment of the effects of methylphenidate in a potential new rat model of attention deficit hyperactivity disorder. Psychopharmacology 180, 716-723.

    47.Houston, G.C., Papadakis, N.G., Carpenter, T.A., Hall, L.D., Mukherjee, B., James, M.F., and Huang, C.L., 2001. Mapping of brain activation in response to pharmacological agents using fMRI in the rat. Magn. Reson. Imaging 19, 905-919.

    48.Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput 1997; 9:1483-1492.

    49.Hyvarinen,A., Fast and robust fixed-point algorithms for independent component analysis, Ieee Transactions on Neural Networks, 10 (1999) 626-634.

    50.Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New York: John Wiley & Sons; 2001.

    51.Kalisch, R., Elbel, G., Gossl, C., Czisch, M., and Auer, D.P., 2001. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 tesla: implications for pharmacologic MRI. NeuroImage 14, 891-898.

    52.Kao YH, Guo WY, Wu YT, Liu KC, Chai WY, Lin CY, Hwang YS, Liou AJK, Wu HM, Cheng HC, Yeh TC, Hsieh JC, and T MMH. Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation. Magn Reson Med 2003; 49:885-894.

    53.KjØlby BF, Østergaard L and Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56:187-197.

    54.Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46:1113-1122.

    55.Kiselev VG. Transverse relaxation effect of MRI contrast agents: A crucial issue for quantitative measurements of cerebral perfusion. J Magn Reson Imaging 2005; 22:693-696.

    56.Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen, and Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. NeuroImage 2003; 19:253-260.

    57.Koob, G.F. and Bloom, F.E., 1988. Cellular and molecular mechanisms of drug dependence. Science 242, 715-723.

    58.Kubler,A., Dixon,V., and Garavan,H., Automaticity and reestablishment of executive control-an fMRI study, J. Cogn Neurosci., 18 (2006) 1331-1342.

    59.Llacer, J., Veklerov, E., Baxter, L.R., Grafton, S.T., Griffeth, L.K., Hawkins, R.A., Hoh, C.K., Mazziotta, J.C., Hoffman, E.J., Metz, C.E., 1993. Results of a clinical receiver operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies. J. Nuclear Med. 34(7), 1198-1203.

    60.Li X, Tian J, Li E, Wang X, Dai J, and Ai L. Adaptive total linear least square method for quantification of mean transit time in brain perfusion MRI. Magn Reson Imaging 2003; 21:503-510.

    61.Li, Y., Calhoun, V.D., 2006. Sample dependence correction for order selection in fMRI analysis. IEEE International Symposium on Biomedical Imaging: Nano to Macro, April, pp. 1072-1075.

    62.Li,S.J., Li,Z., Wu,G., Zhang,M.J., Franczak,M., and Antuono,P.G., Alzheimer Disease: evaluation of a functional MR imaging index as a marker, Radiology, 225 (2002) 253-259.

    63.Liang,M., Zhou,Y., Jiang,T., Liu,Z., Tian,L., Liu,H., and Hao,Y., Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging, Neuroreport, 17 (2006) 209-213.

    64.Liu., C.H., Greve, D.N., Dai, G., Marota, J.J.A., and Mandeville, J.B., 2007. Remifentanil administration reveals biphasic phMRI temporal responses in rat consistent with dynamic receptor regulation. NeuroImage 34, 1042-1053.

    65.Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, and Gao J. Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 1999; 42:167-172.

    66.Loubinoux,I., Carel,C., Alary,F., Boulanouar,K., Viallard,G., Manelfe,C., Rascol,O., Celsis,P., and Chollet,F., Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging, J. Cereb. Blood Flow Metab, 21 (2001) 592-607.

    67.Lowe,M.J., Mock,B.J., and Sorenson,J.A., Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations, Neuroimage, 7 (1998) 119-132.

    68.Lowe, A.S., Williams, S.C.R., Symms, M.R., Stolerman, I.P., Shoaib, M., 2002. Functional magnetic resonance neuroimaging of drug dependence: anloxone-precipitated morphine withdrawal. NeuroImage 17, 902-910.

    69.Marshall,I., Simonotto,E., Deary,I.J., Maclullich,A., Ebmeier,K.P., Rose,E.J., Wardlaw,J.M., Goddard,N., and Chappell,F.M., Repeatability of motor and working-memory tasks in healthy older volunteers: assessment at functional MR imaging, Radiology, 233 (2004) 868-877.

    70.Martel AL, Moody AR, Allder SJ, Delay GS, and Morgan PS. Extracting parametric images from dynamic contrast-enhanced MRI studies of the brain using factor analysis. Med Image Anal 2001; 5:29-39.

    71.Martel AL, Fraser D, Delay GS, Morgan PS, and Moody AR. Separating arterial and venous components from 3D dynamic contrast-enhanced MRI studies using factor analysis. Magn Reson Med 2003; 49:928-933.

    72.Mass, L.C., Lukas, S.E., Kaufman, M.J., Weiss, R.D., Daniels, S.L., Rogers, V.W., Kukes, T.J. and Renshaw, P.F., 1998. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155, 124-126.

    73.McCann, Una D., Ricaurte, George, A., 1999. Neuropathology of cocaine abuse. Curr. Opin. Psychiatry 12(3), 277-280.

    74.McGonigle,D.J., Howseman,A.M., Athwal,B.S., Friston,K.J., Frackowiak,R.S., and Holmes,A.P., Variability in fMRI: an examination of intersession differences, Neuroimage, 11 (2000) 708-734.

    75.McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, and Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Map 1998; 6:160-188.

    76.McKeown MJ, and Sejnowski TJ. Independent component analysis of fMRI data: examining the assumptions. Hum Brain Map 1998; 6:368-372.

    77.Mckie, S., Elliott, R., Williams. N. Anderson and Deakin J.F.W., 2005. Psychopharmacology 180, 680-686.

    78.McKiernan,K.A., Kaufman,J.N., Kucera-Thompson,J., and Binder,J.R., A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging, J. Cogn Neurosci., 15 (2003) 394-408.

    79.Minka, T.P., 2000. Automatic choice of dimensionality for PCA. M.I.T. Media Laboratory Perceptual Computing Section Technical Report No 514.

    80.Murase K, Kikuchi K, Hitoshi M, Shimizu T, and Ikezoe J. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast enhanced MR imaging. J Magn Reson Imaging 2001; 13:797-806.

    81.Østergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, and Gyldensted C. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cerebr Blood Flow Metab 1998; 18:425-432.

    82.Raichle,M.E., MacLeod,A.M., Snyder,A.Z., Powers,W.J., Gusnard,D.A., and Shulman,G.L., A default mode of brain function, Proc. Natl. Acad. Sci. U. S. A, 98 (2001) 676-682.

    83.Raichle,M.E. and Gusnard,D.A., Intrinsic brain activity sets the stage for expression of motivated behavior, J. Comp Neurol., 493 (2005) 167-176.

    84.Rao, S.M., Salmeron, B.J., Durgerian. S., Janowiak, A.J., Fischer, M., Risinger, R.C., Conant, L.L., and Stein, E.A., 2000. Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry 157, 1697-1699.

    85.Raz,A. and Buhle,J., Typologies of attentional networks, Nat. Rev. Neurosci., 7 (2006) 367-379.

    86.Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, and Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193:637-641.

    87.Risinger, R.C., Salmeron, B.J., Ross, T.J., Amen, S.L., Sanfilipo, M., Hoffmann, R.G. Bloom, A.S., Garavan, H., Stein, E.A., 2005. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. NeuroImage 26, 1097-1108.

    88.Rissanen, J., 1983. A universal prior for integers and estimation by minimum description length. Ann Statistics 11, 416-431.

    89.Rombouts,S.A., Barkhof,F., Hoogenraad,F.G., Sprenger,M., and Scheltens,P., Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging, Magn Reson. Imaging, 16 (1998) 105-113.

    90.Rosen B, Belliveau JW, and Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Quart 1989; 5(4):263-281.

    91.Schmithorst, V.J., Holland, S.K., 2004. Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. J. Mag. Res. Imaging 19, 365-368.

    92.Schwarz, A.J., Gozzi, A., Reese, T., Bifone, A., 2007a. In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. NeuroImage 34, 1627-1636.

    93.Schwarz, A.J., Whitcher, B., Gozzi, A., Reese, T., Bifone, A., 2007b. Study-level wavelet cluster analysis and data-driven signal models in pharmacological MRI. J Neurosci. Methods 159, 346-360.

    94.Shoaib, M., Lowe, A.S. and Steve C.R. Williams, 2004, Imaging localized dynamic changes in the nucleus acooumbens following nicotine withdrawal in rats. NeuroImage 22, 847-854.

    95.Shulman,R.G., Rothman,D.L., Behar,K.L., and Hyder,F., Energetic basis of brain activity: implications for neuroimaging, Trends Neurosci., 27 (2004) 489-495.

    96.Sibson,N.R., Dhankhar,A., Mason,G.F., Rothman,D.L., Behar,K.L., and Shulman,R.G., Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity, Proc. Natl. Acad. Sci. U. S. A, 95 (1998) 316-321.

    97.Smith,S.M., Beckmann,C.F., Ramnani,N., Woolrich,M.W., Bannister,P.R., Jenkinson,M., Matthews,P.M., and McGonigle,D.J., Variability in fMRI: a re-examination of inter-session differences, Human Brain Mapping, 24 (2005) 248-257.

    98.Sorensen AG. What is the meaning of quantitative CBF? AJNR 2001; 22:235236.

    99.Stein, E.A., Pankiewicz, J., Harsch, H.H., Cho, J., Fuller, S.A., Hoffmann, R.G., Hawkins, M, Rao, S.M., Bandettini, P.A. and Bloom, A.S., 1998. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155(8), 1009-1015.

    100.Svensen, M., Kruggel, F., Benali, H., 2002. ICA of fMRI group study data. NeuroImage 16, 551-563.

    101.Talairach, J., and Tournoux, P., 1988. Co-planar sterotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, New York.

    102.Thacker NA, Scott MLJ, Jackson A. Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow? J Magn Reson Imaging 2003; 17:241-255.

    103.Thirion, B., Pinel, P., Meriaux, S., Roche, A., Dehaene, S., Poline, J., 2007. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 35, 105-120.

    104.van de Ven, V.G., Formisano, E., Prvulovic, D., Roeder, C.H., Linden, D.E.J., 2004. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping 22, 165-178.

    105.van Osch MJP, Vonken EPA, Bakker CJG, and Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001; 45:477-485.

    106.van Osch MJP, Vonken EPA, Viergever MA, Grond J, and Bakker. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49:1067-1076.

    107.van Schalkwyk, J. 2000. http://www.anaesthetist.com/mnm/stats/roc/.

    108.Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao Y, Wedeen VJ, and Brady TJ. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6:164-174.

    109.Volkow, N.D., Wang, G.J., Fowler, J.S., Zhu, W., Maynard, L., Telang, F., Vaska, P., Ding, Y.S., Wong, C., Swanson, J.M., 2003. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci. 23(36), 11461-11468.

    110.Volkow, N.D., Ding, Y., Fowler, J.S., Wang, G., Logan, J., Gatley, J.S., Dewey, S., Ashby, C., Liebermann, J., Hitzemann, R., Wolf, A.P., 1995. Is methylphenidate like cocaine? Arch Gen. Psychiatry 52, 456-463.

    111.Volkow, N.D., Hitzemann, R., Wang, G., Fowler, J.S., Wolf, A.P., Dewey, S.L. and Handlesman, L., 1992. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11, 184-190.

    112.Xiong,J., Parsons,L.M., Gao,J.H., and Fox,P.T., Interregional connectivity to primary motor cortex revealed using MRI resting state images, Human Brain Mapping, 8 (1999) 151-156.

    113.Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994; 32:749-763.

    114.Yoo,S.S., O'leary,H.M., Dickey,C.C., Wei,X.C., Guttmann,C.R., Park,H.W., and Panych,L.P., Functional asymmetry in human primary auditory cortex: identified from longitudinal fMRI study, Neurosci. Lett., 383 (2005) 1-6.

    115.Waites,A.B., Stanislavsky,A., Abbott,D.F., and Jackson,G.D., Effect of prior cognitive state on resting state networks measured with functional connectivity, Human Brain Mapping, 24 (2005) 59-68.

    116.Waites,A.B., Briellmann,R.S., Saling,M.M., Abbott,D.F., and Jackson,G.D., Functional connectivity networks are disrupted in left temporal lobe epilepsy, Ann. Neurol., 59 (2006) 335-343.

    117.Wallace, E.A., Wisniewski, G., Zubal, G., vanDyck, C.H., Pfau, S.E., Smith, E.O., Rosen, M.I., Sullivan, M.C., Woods, S.W., Kosten, T.R., 1996. Acute cocaine effects on absolute cerebral blood flow. Psychopharmacology 128, 17-20.

    118.Wax, M., Kailath, T., 1985. Detection of signals by information theoretic criteria. IEEE Trans on Acoustics, Speech, and Signal Processing 33(2), 387-392.

    119.Weakliem, D.L., 1999. A critique of the Bayesian information criterion for model selection. Sociological Methods & Research 27(3), 359-397.

    120.Wei,X., Yoo,S.S., Dickey,C.C., Zou,K.H., Guttmann,C.R., and Panych,L.P., Functional MRI of auditory verbal working memory: long-term reproducibility analysis, Neuroimage, 21 (2004) 1000-1008.

    121.Whitcher, B., Schwarz, A.J., Barjat, H., Smart, S.C., Grundy, R.I., and James, M.F., 2005. Wavelet-based cluster analysis: data-driven grouping of voxel time courses with application to perfusion-weighted and pharmacological MRI of the rat brain. NeuroImage 24, 281-295.

    122.Worsley, K., Friston, K., 1995. Analysis of fMRI time series revisited –Again. NeuroImage 2, 173-181.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE