研究生: |
鍾姍芸 Chung, Shan-yun |
---|---|
論文名稱: |
Low-energy electron point projection microscope imaging using Ir/W(111) nanotip sources 利用銥覆蓋鎢(111)奈米級場發射電子源研究在低能量電子點投影顯微術之成像行為 |
指導教授: |
黃英碩
Hwang, Ing-Shouh |
口試委員: |
黃英碩
張嘉升 闕郁倫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 同調性 、單原子針 、點投影顯微術 、感應電荷效應 、同調性電子繞射影像技術 |
外文關鍵詞: | coherence, single-atom tip, point projection microscope, biprism effect, coherent electron diffraction imaging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
With the custom-made low-energy electron point projection microscope (PPM) and the single atom emitters which have the characteristics of high brightness and coherence, interference fringes have been investigated, and diffraction patterns could also be observed without any lens. In the first part, carbon nanotubes is used as the sample for the observation of the interference fringes induced by the biprism effect. When the tip-sample distance fixed, the fringe spacing decrease, and the region with regularly-spaced fringes increases as the tip bias increases. Combining with the simulation results, the induced charge density also increases as the tip bias rises up. This result reveals that the biprism effect will gradually dominate the formation of interference fringes as the tip-sample distance decreases below a certain value.
In the second part, we redesign the instruments for diffraction experiments. A piece of suspended graphene replaces carbon nanotubes as the sample. With the thin enough graphene, the diffraction patterns can be obtained easily in our lensless instrument by adjusting the position of detector (retractable MCP). The symmetrical hexagonal diffraction spots are clearly observed on the detector, which can be acquired with a CCD camera using a short exposure time about a few seconds.
本論文是利用自製低能量電子點投影顯微儀搭配具有高亮度及高同調性之單原子針觀察由電子束引起的干涉條紋,及在沒有任何透鏡的情況下 取得繞射圖形。首先,我們利用奈米碳管當做樣品以觀察由感應電荷引起的干涉條紋。固定針和樣品之間的距離,藉由增大加在針上的偏壓,不只干涉條紋的間距會受到影響而變小,具有等寬條紋的區域也會因而擴大。搭配理論模擬可得知奈米碳管上的感應電荷密度也隨著加在針上的偏壓增加而增加。由此可知當真和樣品之間的距離逐漸減少時,電荷感應效應會逐漸主導且成為干涉條紋的形成主要原因。
在第二個部分,我們改變部分的儀器架構以利於進行繞射實驗。在繞射實驗中,我們選擇利用懸掛在樣品支架中的單層石墨烯當做繞射實驗的樣品。藉由調整伸縮式的光電倍增板至適當的位置,即可觀察到單層石墨烯的繞射圖形。不需藉助任何透鏡的調整,只需曝光數秒鐘就可以得到六角型對稱的繞射圖形。
1. Morton, G.A. and E.G. Ramberg, Point projector electron microscope. Physical Review, 1939. 56(7).
2. Gabor, D., A New Microscopic Principle. Nature, 1948. 161(4098).
3. Muller, E.W. and T.T. Tsong, In field ion microscopy: Principle and applicaitons. 1969.
4. Fink, H.W., W. Stocker, and H. Schmid, Holography with Low-Energy Electrons. Physical Review Letters, 1990. 65(10).
5. Fink, H.W., DNA and conducting electrons. Cellular and Molecular Life Sciences, 2001. 58(1).
6. Fink, H.W., et al., Electron holography of individual DNA molecules. Journal of the Optical Society of America a-Optics Image Science and Vision, 1997. 14(9).
7. Fink, H.W. and C. Schonenberger, Electrical conduction through DNA molecules. Nature, 1999. 398(6726).
8. Binh, V.T., et al., Local analysis of the morphological properties of single-wall carbon nanotubes by Fresnel projection microscopy. Journal of Applied Physics, 2000. 88(6).
9. Adessi, C., et al., Influence of structural defects on Fresnel projection microscope images of carbon nanotubes: Implications for the characterization of nanoscale devices. Physical Review B, 2000. 61(20).
10. Binh, V.T., V. Semet, and N. Garcia, Low-Energy-Electron Diffraction by Nano-Objects in Projection Microscopy without Magnetic Shielding. Applied Physics Letters, 1994. 65(19).
11. Cho, B., et al., Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters. Physical Review Letters, 2004. 92(24).
12. Cho, B., et al., Direct confirmation of the high coherency of the electron beam from a nanotip. Applied Physics Express, 2008. 1(7).
13. Tonomura, A., Present and Future of Electron Holography. Journal of Electron Microscopy, 1989. 38.
14. Tonomura, A., Electron Holography - a New View of the Microscopic. Physics Today, 1990. 43(4.
15. Tonomura, A., Applications of Electron Holography. Reviews of Modern Physics, 1987. 59(3).
16. Tonomura, A., et al., Development of a Field-Emission Electron-Microscope. Journal of Electron Microscopy, 1979. 28(1).
17. Völkl, E., L.F. Allard, and D.C. Joy, Introduction to electron holography. 1999, New York: Kluwer Academic/Plenum Publishers.
18. Hibi, T., Pointws filaments I. Its production and its application. J. Electron Microsc, 1956. 4(10).
19. Attwood, D.T., Soft x-rays and extreme ultraviolet radiation : principles and applications. 2000, Cambridge ; New York: Cambridge University Press.
20. Fink, H.W., et al., Atomic Resolution in Lensless Low-Energy Electron Holography. Physical Review Letters, 1991. 67(12).
21. Gabor, D., Microscopy by reconstructed wavefronts. Proc. Roy. Soc. (London), 1951. B 64,449.
22. Gabor, D., Microscopy by reconstructed wavefronts. Proc. Roy. Soc. (London), 1949. A 197, 454.
23. Pozzi, G., Theoretical Considerations on the Spatial Coherence in Field-Emission Electron-Microscopes. Optik, 1987. 77(2).
24. Goldstein, J., Scanning electron microscopy and x-ray microanalysis. 3rd ed. 2003, New York: Kluwer Academic/Plenum Publishers.
25. Williams, D.B. and C.B. Carter, Transmission electron microscopy : a textbook for materials science. 1996, New York: Plenum Press.
26. Fink, H.W., Mono atomic tips for scanning tunneling microscope. IBM Journal of Research and Development, 1986. 30.
27. Binh, V.T. and N. Garcia, On the Electron and Metallic Ion Emission from Nanotips Fabricated by Field-Surface-Melting Technique - Experiments on W and Au Tips. Ultramicroscopy, 1992. 42.
28. Nagaoka, K., et al., Field emission spectroscopy from field-enhanced diffusion-growth nano-tips. Applied Surface Science, 2001. 182(1-2).
29. Fu, T.Y., et al., Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation. Physical Review B, 2001. 64(11).
30. Kuo, H.S., et al., Preparation and characterization of single-atom tips. Nano Letters, 2004. 4(12).
31. Ishikawa, T., et al., Highly efficient electron gun with a single-atom electron source. Applied Physics Letters, 2007. 90(14).
32. Itagaki, T., et al., Stabilities in field electron emissions from noble-metal covered W nano-tips: apex structure dependence. Surface and Interface Analysis, 2007. 39(4).
33. Kuo, H.-S., et al., Preparation of Single-Atom Tips and Their Field Emission Behaviors. e-Journal of Surface Science and Nanotechnology, 2006. 4.
34. Hwang, I.S., et al., Noble metal/W(111) single-atom tips and their field electron and ion emission characteristics. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(11).
35. Zuo, J.M., et al., Sub-angstrom-resolution diffractive imaging of single nanocrystals. Nature Physics, 2009. 5(2).
36. Lichte, H. and M. Lehmann, Electron holography - basics and applications. Reports on Progress in Physics, 2008. 71(1).
37. Prigent, M. and P. Morin, Charge effect in point projection images of carbon fibres. Journal of Microscopy-Oxford, 2000. 199.
38. Mutus, J.Y., et al., Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'. New Journal of Physics, 2011. 13.