簡易檢索 / 詳目顯示

研究生: 陳治廷
Chih-Ting Chen
論文名稱: 以改善影像定位為基礎之低解析車牌影像重建
A Study for Reconstruction Low-Resolution License Plate Image Base on Improving Image Alignment
指導教授: 林士傑
Shin-Chieh Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 影像重建影像定位車牌辨識
外文關鍵詞: image enhancement, image registration, license plate recognition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係使用超解析影像重建( Super Resolution ),解決車牌辨識系統中低解析度( Low Resolution )車牌的辨識問題。然而,超解析影像重建的過程之中有一個很重要的環節,那就是影像的定位資訊。在相同的影像重建方法之下,有較佳的影像定位結果,相對的就會有較好的重建結果,因此我們可以瞭解到定位資訊的重要性。
      常見的影像定位方法主要分為兩類,特徵法與區域法。特徵法係先找出特徵點,並利用特徵點求出定位資訊。而區域法則是運用圖片中大部分的區域作為計算定位的依據。吾人將設計一張最小位移單位為0.1個像素,及最小旋轉單位為0.1度之實驗影像。本研究利用此樣本測試文獻中所提之區域法和特徵法,吾人另外提出改善特徵法的方式,並試圖找出定位精度較高的定位方法。本研究最後將利用較精準之定位方法,並運用此方法所求出之定位結果做低解析車牌影像重建,試圖從難以辨別之低解析車牌資訊辨別出其車牌號碼。


    In this paper, we use Super-resolution to save the problem of low resolution image in license plate recognition system. Image registration is an important part of image enhancement. In the same algorithm of the image enhancement, a precise sub-pixel image registration has a better result of image reconstruction. So, we can understand the important of the image registration.
    There are two kinds of methods for image registration. One of the methods is feature based, the other is area based. The method of feature based finds control point first and finds the orientation of image by using control point. The method of area based finds the orientation of image by almost all over the range of image. We will design an image which's minimum shifted pixel is 0.1 pixel and minimum rotated angle is 0.1 degree. In this paper, we will find the best method of image registration in the biblliography by using the images which we designed. We also propose a new method to improve the method of feature based. We will recognition the low resolution license plate image by using the best method of image registration and try to find the information of the license plate image.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 簡介 1 第二章 文獻回顧 8 2-1 超解析影像之重建 8 2-2 影像定位 12 第三章 研究方法 21 3-1 定位方法 22 3-2 影像重建演算法 29 3-3 影像判別指標 32 第四章 實驗規劃 41 4-1 標準影像的製作 41 4-2 影像定位測試 42 4-3 影像定位與重建 43 4-4 車牌影像重建 45 第五章 實驗結果與討論 57 5-1 影像定位 57 5-2 影像重建 59 5-3 車牌影像重建 62 第六章 結論與未來工作 77 6-1 結果與討論 77 6-2 未來工作 78 參考文獻 80

    [1] W. B. Horng, C. L. Lee, C. H. Fan, “A Study and Implementation on Automatic Intelligent Vehicle License Plate Recognition Systems,” 第二屆台灣智慧型運輸系統ITS國際研討暨展覽會, 臺北, Apr. 2000

    [2] M. J. Ahmed, M. Sarfraz, A. Zidouri, W. G. Al-Khatib, “License Plate Recognition System,” Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE International Conference on Volume 2, 14-17 Dec. 2003 Page(s):898 - 901 Vol.2

    [3] S. Z. Wang, H. J. Lee, “Detection and Recognition of License Plate Characters with Different Appearances,” Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE Volume 2, 12-15 Oct. 2003 Page(s):979 - 984 Vol.2

    [4] S. L. Chang, L. S. Chen, Y. C. Chung, S. W. Chen, “Automatic License Plate Recognition,” IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 1, March 2004

    [5] S. H. Park, K. I. Kim, K. Jung, H. J. Kim, “Locating Car License Plate Using Neural Networks,” Electronics Letters 19th August 1999 Vol. 35 No. 17

    [6] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, S. Yamamoto, “Robust License-Plate Recognition Method for Passing Vehicles Under Outside Environment,” Vehicular Technology, IEEE Transactions on Volume 49, Issue 6, Nov. 2000 Page(s):2309 - 2319 Digital Object Identifier 10.1109/25.901900

    [7] T. Sirithinaphong, K. Chamnongthai, “The Recognition of Car License Plate for Automatic Parking System,” Signal Processing and It’s Applications, 1999. ISSPA '99. Proceedings of the Fifth International Symposium on Volume 1, 22-25 Aug. 1999 Page(s):455 - 457 vol.1 Digital Object Identifier 10.1109/ISSPA.1999.818210

    [8] R. R. Schultz, R. L. Stevenson, “A Bayesian approach to image expansion for improved definition,” Image Processing, IEEE Transactions on Volume 3, Issue 3, May 1994 Page(s):233 - 242 Digital Object Identifier 10.1109/83.287017

    [9] I. M. Huang, “Super-Resolution Techniques for Image Sequence Enlargement”, 國立成功大學資訊工程學系碩士班, 碩士論文, 2003

    [10] S. C. Park, M. K. Park, M. G. Kang, “Super-resolution image reconstruction: a technical overview,” Signal Processing Magazine, IEEE Volume 20, Issue 3, May 2003 Page(s):21 - 36 Digital Object Identifier 10.1109/MSP.2003.1203207

    [11] R. Y. Tsai, T. S. Huang, “Multiframe image restoration and registration,” Advances in Computer Vision and Image Processing (R. Y. Tsai, T. S. Huang, Eds.), vol. 1, pp.317-339, JAI Press, London, 1984.

    [12] P. Vandewalle, S. SÄusstrunk, M. Vetterli, “A Frequency Domain Approach to Registration of Aliased Images with Application to Super-Resolution," Accepted to EURASIP Journal on Applied Signal Processing, Special Issue on Super-Resolution Imaging , 2005.

    [13] R. R. Schultz, L. Meng, R. L. Stevenson, “Subpixel Motion Estimation for Super-Resolution Image Sequence Enhancement,” Journal of Visual Communication and Image Representation, vol. 9, no. 1, pp. 38-50, Mar. 1998.

    [14] P. H. Chang, J. J. Leou, H. C. Hsieh, “A Genetic Algorithm Approach to Image Sequence Interpolation,” Signal Processing: Image Communication, vol. 16, pp. 507-520, 2001.

    [15] S. Baker, T. Kanade, “Hallucinating Faces,” Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, pp. 83-88, 2000.

    [16] S. Baker, T. Kanade, “Limits on Super-Resolution and How to Break Them,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, issue: 9, pp. 1167-1183, Sept. 2002.

    [17] J. Patti, M. I. Sezan, A. M. Tekalp, “Superresolution Video Reconstruction with Arbitrary Sampling Lattices and Nonzero Aperture Time,” IEEE Transactions on Image Processing, vol. 6, no. 8, pp. 1064-1076, Aug. 1997.

    [18] P. E. Eren, M. I. Sezan, A. M. Tekalp, “Robust Object-Based High-Resolution Image Reconstruction from Low-Resolution Video,” IEEE Transactions on Image Processing, vol. 6, no. 10, pp. 1446-1451, Oct. 1997.

    [19] N. R. Shah, A. Zakhor, “Resolution Enhancement of Color Video Sequences,” IEEE Transactions on Image Processing, vol. 8, issue: 6, pp. 879-885, June 1999.

    [20] M. Irani, S. Peleg, “Improving Resolution by Image Registration,” CVGIP: Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.

    [21] M. Irani, S. Peleg, “Motion Analysis for Image Enhancement: Resolution, Occlusion and Transparency,” Journal of Visual Communications and Image Representation, vol. 4, pp. 324-335, Dec. 1993.

    [22] A. Zomet, S. Peleg, “Efficient Super-Resolution and Applications to Mosaics,” International Conference on Pattern Recognition (ICPR'00), vol. 1, pp. 3-8, Sept. 2000.

    [23] A. Zomet, A. Rav-Acha, S. Peleg, “Robust Super-Resolution,” in Proceedings of the Int. Conf. on Computer Vision and Patern Recognition (CVPR), vol. 1, pp. 645-650, Dec. 2001.
    [24] Z. Wang, F. Qi, “On Ambiguities in Super-Resolution Modeling,” Signal Processing Letters, IEEE Volume 11, Issue 8, Aug. 2004 Page(s):678 - 681 Digital Object Identifier 10.1109/LSP.2004.831674

    [25] S. Chaudhuri, D. R. Taur, “High-Resolution Slow-Motion Sequencing: How to Generate a Slow-Motion Sequence from a Bit Stream,” Signal Processing Magazine, IEEE Volume 22, Issue 2, Mar 2005 Page(s):16 - 24 Digital Object Identifier 10.1109/MSP.2005.1406471

    [26] M.S. Alam, J.G. Bognar, R.C. Hardie, and B.J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Meas., vol. 49, pp. 915-923, Oct. 2000.

    [27] N. Nguyen and P. Milanfar “An efficient wavelet-based algorithm for image superresolution,” in Proc. Int. Conf. Image Processing, vol. 2, 2000, pp. 351-354.

    [28] P.E. Anuta, “Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform,” IEEE Transactions on Geoscience Electronics 8 (1970) 353–368.

    [29] L. G. Brown, “A Survey of Image Registration Techniques,” ACMComputing Surveys 24 (1992) 326–376.

    [30] B. Zitov´a, J. Flusser, “Image Registration Methods: A Survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977.1000, 2003

    [31] L. Kitchen, A. Rosenfeld, “Gray-level corner detection,” Pattern Recognition Letters 1 (1982) 95–102.

    [32] W. Fo¨rstner, E. Gu¨lch, “A fast operator for detection and precise location of distinct points, corners and centers of circular features,” Proceedings of the ISPRS Workshop on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, 1986, pp. 281–305.

    [33] C. Harris, M. stephens, “A Combined Corner and Edge Detector,” Plessey Research Roke Manor, UK. Proceedings of The Fourth Alvey Vision Conference, Manchester, 1988, pp 147-151.

    [34] Y. Bentoutou, N. Taleb, “Automatic Extraction of Control Points for Digital Subtraction Angiography Image Enhancement,” Nuclear Science, IEEE Transactions on Volume 52, Issue 1, Part 1, Feb. 2005 Page(s):238 - 246 Digital Object Identifier 10.1109/TNS.2004.843120

    [35] X. Li, J. Chen, “An Algorithm for Automatic Registration of Image,” Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International Conference on, Proceedings 18-21 Aug. 2004 Page(s):631 - 634 Digital Object Identifier 10.1109/ICMMT.2004.1411608

    [36] R. Berthilsson, “Affine correlation,” Proceedings of the International Conference on Pattern Recognition ICPR’98, Brisbane, Australia, 1998, p. 1458–1461.

    [37] E.D. Castro, C. Morandi, “Registration of translated and rotated images using finite Fourier transform,” IEEE Transactions on Pattern Analysis and Machine Intelligence 9 (1987) 700–703.

    [38] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, H.C. Wolf., “Parametric correspondence and chamfer matching: Two new techniques for image matching,” Proceedings of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, 1977, pp. 659–663.

    [39] G. Borgefors, “Hierarchical chamfer matching: a parametric edge matching algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988) 849–865.

    [40] W.H. Wang, Y.C. Chen, “Image registration by control points pairing using the invariant properties of line segments,” Pattern Recognition Letters 18 (1997) 269–281.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE