簡易檢索 / 詳目顯示

研究生: 李家慶
Chia-ching Lee
論文名稱: 鐵酸鉍鐵電薄膜鍍製在緩衝層/導電層於鐵電記憶體應用之研究特性
Characteristics of BiFeO3 ferroelectric thin films on barrier/conductive layers for FeRAM applications
指導教授: 吳振名
Jenn-ming Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 172
中文關鍵詞: 鐵電鐵酸鉍
外文關鍵詞: ferroelectric, BiFeO3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵酸鉍(BiFeO3,BFO)薄膜具有相當大的鐵電極化量因而在近幾年引起廣泛的研究,然而鐵酸鉍要應用在非揮發鐵電記憶(FeRAM)仍有許多問題需要克服,例如︰雜相的產生、晶體的缺陷、漏電問題、應用上的壽命等問題。本文以磁控濺鍍法(RF-magnetron sputtering)在低溫(350˚C)製備鐵酸鉍薄膜。鐵酸鉍不只以常見的白金作為底電極,為了改善上述的問題,在鐵酸鉍薄膜和白金間加入鍶鈦酸鋇((Ba0.5Sr0.5)TiO3,BST)或鉛酸鋇(BaPbO3,BPO)。研究中發現加入上述兩種材料作為緩衝層的確可改善介面、電性等問題。
    選用鉛酸鋇作為適當的緩衝層,(110)和(111)高優選取向的鐵酸鉍薄膜可分別在鉛酸鋇/釕(BPO/Ru)和鉛酸鋇/鉑/釕(BPO/Pt/Ru) 疊層上得到。兩種疊層跟高優選取向的鐵酸鉍都適合應用在單電晶體單電容(1T1C)的疊層結構並應用於高密度鐵電記憶體。此外,鐵酸鉍經含氫氣體環境(Forming gas)的退火後,性質並不會明顯的退化。最後,以鉛酸鋇取代白金作為上電極,可以得到鐵酸鉍的疲勞性質。以鉛酸鋇作為鐵酸鉍的電極可以提升鐵酸鉍未來在鐵電記憶體應用的可能性。


    Recently, Bismuth Ferrite (BiFeO3, BFO) thin films have been widely studied due to their large spontaneous polarizations. However, many issues need to be overcome by using BFO in FeRAM application. They include impurity phases, defects in crystallization, leakage currents, reliable properties, etc. In this dissertation, BFO thin films were fabricated by RF-magnetron sputtering method at low temperature (350˚C). To overcome the above mentioned issues, BFO was deposited not only on Pt bottom electrode, but also on (Ba0.5Sr0.5)TiO3 (BST) and BaPbO3 (BPO). Introducing BST and BPO as barrier layer between BFO and Pt indeed improve interface and electric characteristics.
    The highly (110)- and (111)-oriented BFO thin films can be obtained on BPO/Ru and BPO/Pt/Ru stacks, respectively. Both highly oriented ferroelectric films have the potential for application in the 1T1C stack structures for high density FeRAM. The properties of BFO do not degrade after forming gas annealing treatment. In addition, replacing Pt top electrode by BPO can improve the fatigue property of BFO film. BFO can be a promising material for FeRAM application by utilizing BPO as electrode.

    Contents Abstract (Chinese)……………… ………………………………………I Abstract (English)……………….…………………………………...…II Acknowledgement……………..…………….………………………....III Contents……….…………….…………………………………….......V List of tables………..……………………………………………….......X List of figures………..…………….………………………..………….XI Chapter 1 Introduction………………………………..….……………...……..1 1.1 The development of memories………..…………………………..…..1 1.2 The development of ferroelectric memories……………………….….……5 1.3 Candidates of ferroelectric materials for FeRAM applications…...…..….8 1.3.1 Lead zirconate titanate (PZT)………………………………………..8 1.3.2 Strontium bismuth tantalite (SBT)…………………………………..9 1.3.3 Lanthanide-substituted bismuth titanate (BLT)…………………..10 1.4 Motivation and Outline of this Dissertation………………………………12 Chapter 2 Background study………...………………………….…………...33 2.1 Bismuth ferrite (BFO)………………….…………...…………...………….33 2.2 Conductive Barrier Layer……….................................................................38 2.2.1 Ruthenium (Ru)……….…………………..…….…………………..38 2.2.2 Barium Metaplumbate (BaPbO3; BPO)………..…..…………..…39 Chapter 3 Experimental Procedures…………..….……………………….47 3.1 Substrates preparation…………………………………………………...49 3.1.1 Pt/Ti/SiO2/Si Substrate…………………………………………….49 3.1.2 Ru/SiO2/Si Substrate………………….…………...………………49 3.2 Fabrication of electrodes………………………………………………...48 3.2.1 Platinum top electrodes…..……...…………………………………48 3.2.2 BaPbO3 electrodes……..…………………….……………………..48 3.3 Fabrication of ferroelectric thin films…...…..…………………………....49 3.3.1 BiFeO3 thin films…………………………...……………………….49 3.3.2 (Ba0.5Sr0.5)TiO3 thin films…..………………………………………49 3.4 Measurements……………………………………………………………...50 3.4.1 Structural analysis………………………………………………….50 3.4.1.1 X-ray Diffraction (XRD)…………………………………..50 3.4.1.2 Grazing Incident X-ray Diffraction (GIXD)……………..50 3.4.1.3 Field Emission Scanning Electron Microscopy (FESEM) ………………………………………………………………50 3.4.1.4 Atomic Force Microscopy (AFM)……………………...…51 3.4.2 Compositional depth profiles and chemical bonding……..………51 3.4.2.1 Secondary Ion Mass Spectroscopy (SIMS)………………51 3.4.2.2 X-ray Photoelectron Spectroscopy (XPS)……...………...51 3.4.3 Electric properties…………………………………………………..51 3.4.3.1 Ferroelectric measurements…..…………………………..52 3.4.3.2 Leakage current measurements…..………………………52 3.4.3.3 Dielectric measurements…………...……………………...52 Chapter 4 Interface and electric characteristics of BiFeO3 thin films deposited on Pt electrodes……………………………………..61 4.1 Introduction……………………………………………………………….61 4.2 Experiments………………………………………………………………..63 4.3 Results and discussion..……………………………………………….….64 4.3.1 Crystal structure and surface morphology……………………….64 4.3.2 Electric properties………………………………………………….66 4.3.3 SIMS depth profiles analysis………………………………………69 4.4 Conclusion.……………………………………………………………….70 Chapter 5 Characteristics and electric properties of BiFeO3 thin films with barrier layers………………………….……………81 5.1. BiFeO3 on (Ba0.5Sr0.5)TiO3 barrier layer.……………………………...…81 5.1.1 Introduction………………………………………………………...81 5.1.2 Experiments……………………………………………………...…83 5.1.3 Results and Discussion……………………………………………..84 5.1.3.1 Crystal structure and surface morphology...……………..84 5.1.3.2 SIMS depth profiles analysis………………………………86 5.1.3.3 Electric properties………………………………………….87 5.1.4 Conclusion…………………………………………………………..89 5.1. BiFeO3 on BaPbO3 barrier layer.……………………………...…………90 5.2.1 Introduction………………………………………………………...90 5.2.2 Experiments……………………………………………………...…92 5.2.3 Results and Discussion……………………………………………..93 5.2.3.1 Crystal structure and surface morphology...……………..93 5.2.3.2 SIMS depth profiles analysis………………………………95 5.2.3.3 Electric properties………………………………………….95 5.2.3.4 Retention behaviors………………………………………..97 5.2.4 Conclusion…………………………………………………………100 Chapter 6 Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt/Ru barrier layers ……………117 6.1 Introduction…………………………………………………………….…117 6.2 Experiments………..……………………………………………………..119 6.3 Results and discussion……………………………………………………120 6.2.1 Crystal structure and surface morphology………………..…….120 6.2.2 SIMS depth profiles analysis……………………………………..122 6.2.3 Electric properties………………………………………………...123 6.4 Conclusion....……………………………………………………………...126 Chapter 7 Studies on forming gas annealing treated BiFeO3 thin films and capacitors.....................................................133 7.1 Introduction…………………………………………………………….…133 7.2 Experiments………..……………………………………………………..135 7.3 Results and discussion……………………………………………………136 7.2.1 Crystal structure…………………………...………………..…….136 7.3.2 Electric properties………………………………………………...136 7.3.3 XPS analysis………………………………………………..……...138 7.3.4 Reliable properties………………………………………………...139 7.4 Conclusion....……………………………………………………………...141 Chapter 8 Conclusions………………….……………………...……153 References………………………………...…………………………..157 Publications………………………………..………………………....171 List of tables Table 1-1 Comparisons between nonvolatile memories.………………….………15 Table 1-2 A comparison of emerging memories..…………..……………………..15 Table 1-3 Properties of PZT, SBT, and BLT thin films prepared on conventional Pt electrodes...............................................................................................16 Table 2-1 Basic properties of Ru metal.………………………………………...….41 Table 2-2 Basic properties of BPO oxidation electrode.…………………………..41 Table 3-1 The deposition parameters of Ru thin film.………………….………...54 Table 3-2 The deposition parameters of Pt top electrode…………….………..…54 Table 3-3 The deposition parameters of BPO thin film…………………………..55 Table 3-4 The deposition parameters of BPO thin film…………………………..55 Table 3-5 The deposition parameters of BST thin film…………………………...56 Table 5-1 Deposition conditions of BST and BFO thin films……………………101 List of figures Figure 1-1 The classification of semiconductor memories…………………….….17 Figure 1-2 The basic circuits of (a) SRAM and (b) DRAM.……………………...17 Figure 1-3 The schematic views of nanocrystal memories structure.……………18 Figure 1-4 Illustration of (a) a RRAM cell; (b) a magnetoresistive tunnel junction (MJT), and (c) Stoner-Wohlfarth switching Astroid diagram.………19 Figure 1-5 A data storage region in the PCRAM cell.………………….…………21 Figure 1-6 A general I-V characterization of RRAM.…..…………………….…..22 Figure 1-7 The Nantero’s design for NRAM involves the use of suspended nanotube junctions as memory bits.…………………….……..…..….22 Figure 1-8 Typical ABO3 perovskite unit cell.…………………….……………….24 Figure 1-9 Hysteresis loop of a ferroelectric material………………………...…..25 Figure 1-10 Cross section schematic diagram of 1T1C cell FeRAM.………..…..25 Figure 1-11 Schematic View and circuits of FeRAM cell structure (a) 2T-2C and (b) 1T-1C………….…………...………………………………………26 Figure 1-12 FeRAM technology roadmap of Fujitsu..…………………………....27 Figure 1-13 Schematic drawings of ferroelectric capacitor types of FeRAM (a) offset cell, (b) stack cell and (c) 3D type cell.………………………..28 Figure 1-14 Schematic view of 1T memory cell structure..………………………29 Figure 1-15 The sub-solidus phase diagram for PbZrO3-PbTiO3.……………….29 Figure 1-16 Lattice structure of the Strontium bismuth tantalite.………………30 Figure 1-17 Lattice structure of the bismuth titanate and La-substituted bismuth titanate………...……………………………………………………….30 Figure 1-18 The roadmap of ITRS in 2006 for FeRAM.…………………………31 Figure 2-1 Hexagonal unit cell of BiFeO3.…………………………………….…...42 Figure 2-2 Perovskite unit cell of BFO…………………………………………….43 Figure 2-3 Schematic of the prototypical rhombohedral (A) and tetragonal (B) BFO unit cells. The corresponding atomic positions and spontaneous polarizations from first-principles calculations and experiment are shown in (C) and (D).……………………………….…….......……...…44 Figure 2-4 The magnetic structure of BFO materials.……………………………45 Figure 2-5 (a) The (110)-plane of RuO2, (b) The (110)-plane of BaPbO3, (c) The surface geometry relations of (110)-plane of RuO2 and BPO.…..……46 Figure 3-1 Schematic diagrams of a Virtual-ground circuit……………………..57 Figure 3-2 Measured pulse of (a) hysteresis, (b) pulse measurement, (c) retention, and (d) fatigue………………………………………………..……….…57 Figure 3-3 Schematic drawing of Hewlett-Packard computer controlled-keithely mode (236/237) semiconductor parameter analyzer.……….…………59 Figure 4-1 X-ray diffraction patterns of BFO films on Pt/Ti/SiOx/Si substrates with thickness from 85 to 280 nm.……………………………………..71 Figure 4-2 Grazing-incident X-ray diffraction measurement with the incident angle form 0.1o to 1o for the BFO thin films with thickness of (a) 280, (b) 210, (c) 120 and (d) 85 nm.…………………………………...……..72 Figure 4-3 AFM images of BFO films with different thickness (a) 85 nm, (b) 120 nm, (c) 210 nm, and (d) 280 nm.………………………….……………74 Figure 4-4 Polarization (P)-electrical field (E) hysteresis loops of BFO films at room temperature with thickness (a) 210, (b) 120, and (c) 85 nm. (d)P-E of BFO films with various thicknesses measured under about 1200 kV/cm.……………………………………………….…………...75 Figure 4-5 The variation of Pr and Ec as a function of applied electric field in BFO thin films with different thickness.…………................................76 Figure 4-6 (a) Dependence of the dielectric constant (εr) and dissipation factor (tanδ) on the thickness of BFO films measured at 1k Hz. (b) Reciprocal capacitance plotted versus the film thickness.………....…77 Figure 4-7 Leakage current density (J)-electrical field (E) curves of BFO with different thickness measured at room temperature.……..….…….…78 Figure 4-8 SIMS profiles of BFO/Pt/Ti/SiOx/Si structure with BFO films thickness of 210 nm.…………………………………………………….79 Figure 5-1 XRD patterns of BFO deposited on Pt electrode and various thicknesses of BST buffer layers.………………………………….…102 Figure 5-2 GIXD patterns with the incident angle of 0.3o for (a) BST buffer layer, (b) BFO films on Pt and (c) BFO on BST buffer layers.……………103 Figure 5-3 The surface morphologies of (a)BFO on Pt, (b)BST(5), (c)BST(10) and (d)BST(15) analyzed by AFM………………………………...…..…..104 Figure 5-4 The compositional depth profiles of BFO(5) analyzed by SIMS…...105 Figure 5-5 P-E hysteresis curves of (a)BFO on Pt, (b)BFO(5), (c)BFO(10), (d)BFO(15)……………………………………………………………..106 Figure 5-6 The leakage current densities of BFO thin films deposited on BST with various film thicknesses.………………….……………………...107 Figure 5-7 (a) The opposite-state retention characteristics within 30,000s of the BFO films on BST buffer layer, (b) Normalized reduction of △P in fig. 7(a).…….…………………………………………………………….....108 Figure 5-8 X-ray diffraction patterns of BFO films on BPO electrode with film thicknesses from 100 to 230 min.…………………...……………...…109 Figure 5-9 Grazing-incident X-ray diffraction measurement with incident angle of 0.3o for BFO films on BPO with various film thicknesses.………110 Figure 5-10 SEM images of BFO films with (a) 100 and (b)230 nm film thicknesses; AFM images of BFO films with (c) 100 and (d) 230 nm film thicknesses.……………..………………………………………..111 Figure 5-11 Compositional depth profiles of BFO films with 230 nm film thickness analyzed by SIMS.………..….……………………………112 Figure 5-12 The P-E hysteresis curves of BFO films with various film thicknesses at room temperature.………………………………………...………113 Figure 5-13 (a) The polarization change of BFO on BPO under opposite-state switching as a function of pulse width. (b) Retention characteristics of BFO on BPO within 30,000 sec. The inset in Fig. 6(b) exhibits the normalized retention.……………………………………………114 Figure 5-14 The retention behaviors of BFO deposited on BPO with varied film thicknesses.………………………...…………………………………115 Figure 6-1 XRD patterns of (a) (110)-oriented and (b) (111)-oriented BFO films deposited on BPO/Ru and BPO/Pt/Ru substrates, respectively. The insets show the rocking curves of BFO.………………...………….…127 Figure 6-2 Surface morphology of BFO thin films deposited on (a) BPO/Ru and BPO/Pt/Ru substrates.………………………………………………..128 Figure 6-3 Compositional depth profiles of the BFO thin films deposited on (a) BPO/Ru and BPO/Pt/Ru substrates analyzed by SIMS.…………...129 Figure 6-4 The P-E hysteresis curves of (a) (110)-oriented and (b) (111)-oriented BFO films...……..……………………………………………………..130 Figure 6-5 (a) The change of polarization under opposite-state switching as a function of pulse width. (b) Retention characteristics of (110)- and (111)-oriented BFO films. The inset in Fig. 5(b) exhibits the normalized retention.………………………………………………....131 Figure 7-1 XRD patterns of BFO/BPO films (a) with NGA, (b) with FGA, and (c) Pt/BFO/BPO films with FGA.……………..…………………………143 Figure 7-2 The P-E hysteresis curves of BFO/BPO films with NGA and FGA. The inset displays the P-E loops of Pt/BFO/BPO films.………….….144 Figure 7-3 The leakage current densities of BFO/BPO films with NGA, BFO/BPO films with FGA, and Pt/BFO/BPO films with FGA.…….145 Figure 7-4 (a) Retention characteristics of BFO with NGA and FGA. The inset exhibits the normalized retention. (b) Log retention behaviors of BFO with NGA and FGA.…………………………………………………...146 Figure 7-5 High-resolution spectra of Bi 4f photoelectrons in BFO/BPO films with (a) NGA, (b) FGA, and (c) Pt/BFO/BPO films treated with FGA…………………………………………………………….………147 Figure 7-6 The P-E hysteresis curves of BPO/BFO/BPO films after FGA..…...149 Figure 7-7 (a) Normalized Pr values of BPO/BFO/BPO capacitors as a function of 13 V signal with 20 MHz. The inset shows the P-E loops of BFO film before and after fatigue.……………………………………...…..150 Figure 7-7 (b) The opposite-state retention behavior of the BPO/BFOBPO structure. Normalized reduction of switching polarization (△P) in retention is shown in the inset….………………………………..……151

    [1] Hughes, B Reliability Physics Symposium Proceedings, 2004. 42nd Annual. 2004 IEEE International 25-29 April 2004 Page(s): 194 - 199
    [2] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
    [3] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004).
    [4] I. G. Baek et al., IEDM Tech. Dig. 2004
    [5] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Science, 289, 94 (2000).
    [6] http://www.nantero.com/
    [7] J. F. Scott, and C. A. Paz de Araujo, Science 246, 1400 (1989).
    [8] H. McAdams, R. Acklin, T. Blake, J. Fong, D. Lui, S. Madan, T. Moise, S. Narayan, N. Qian, Y. Qui, J. Roscher, A. Seshadri, S. Summerfelt, X. Du, J. Eliason, W. Kraus, R. Lanham, F. Li, C. Pietrzyk and J. Rickes, Symp. VLSI Circuits Dig. Tech. Papers, 175 (Tokyo, Japan, June 2003).
    [9] S. Y. Lee and K. Kim, “Future 1T1C FRAM Technologies for Highly reliable, High density FRAM”, IEEE International Electron Devices Meeting, 547 (2002).
    [10] B. Jaffe, W. R. Cooke Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
    [11] E. G. Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, Appl. Phys. Lett. 70, 2404 (1997)
    [12] Z. Huang, Q. Zhang, and R. W. Whatmore, J. Appl. Phys. 85 , 7355 (1999).
    [13] J. Hong, H. W. Song, H. C. Lee, W. J. Lee, and K. No, J. Appl. Phys. 90, 1692 (2001).
    [14] G. Asano, T. Oikawa, H. Funakubo and K. Saito, Jpn. J. Appl. Phys. 34, L1083 (2003).
    [15] K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu, Appl. Phys. Lett. 82, 1263 (2003).
    [16] J.F. Sott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, J. Appl. Phys. 70 , 382 (1991).
    [17] M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000).
    [18] K. Takemura, T. Sakuma and Y. Miyasaka, Appl. Phys. Lett. 64, 2967 (1994).
    [19] G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, Appl. Phys. Lett. 76, 1318 (2000).
    [20] T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Jpn. J. Appl. Phys. 34, 5184 (1995).
    [21] K. B. Lee, B. R. Rhee, and C. K. Lee, Appl. Phys. Lett. 79, 821 (2001).
    [22] M. S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996).
    [23] G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J. Tang, and J. H. Chu, Appl. Phys. Lett. 79, 3476 (2001).
    [24] C. S. Liang, and J. M. Wu, and M. C. Cheng, Appl. Phys. Lett. 81, 3624 (2002).
    [25] G.A. Somolenskii, V.A. Isupov and A.I. Agranovskaya, Soviet Phys. Solid State, 1, 149 (1959).
    [26] S. Ikegami and E. Ueda, Jap. J. Appl. Phys., 13, 1572 (1974).
    [27] J. F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989).
    [28] C. A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott, Nature (London) 374, 627 (1995)
    [29] T. Atsuki, N. Soyama, T. Yonezawa, and K. Ogi, Jap. J. Appl. Phys., 34, 5096 (1995).
    [30] H. Watanabe, T. Mihara, H. Yoshimori and, Carlos A. Paz de Araujo, Jap. J. Appl. Phys., 34, 5240 (1996)
    [31] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature, 401, 682 (1999).
    [32] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).
    [33] T. Takenaka and K. Sakata, Ferroelectrics 38, 769 (1981).
    [34] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett. 74, 1907 (1999).
    [35] T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K. Saito, and M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
    [36] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003).
    [37] S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).
    [38] J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004).
    [39] M. M. Kumar, V. R. Palkar, K. Srinivas and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).
    [40] Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu, and H. N. Lin, Electrochem. Solid State Leet. 8, F43 (2005).
    [41] V. R. Palkar, Darshan C. Kundaliya, S. K. Malik, and S. Bhattacharya, Phys. Rev. B 69, 212102 (2004).
    [42] X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
    [43] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).
    [44] K. Y. Yun, M. Noda, and M. Okuyama, J. Korean Phys. Soc. 42, S1153 (2003).
    [45] C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Communications 7, 701 (1969).
    [46] B. Ruette, MS thesis, Virginia Tech (2003).
    [47] S. V. Kiselev, R. P. Ozerov, and G. S. Zhadanov, Sov, Phys, 7, 742 (1963).
    [48] I. G. Ismailzade, Sov. Phys. 11, 747 (1967).
    [49] J. D. Bucci, B. K. Robertson and W. J. James, J. Appl. Cryst. 5, 187 (1972).
    [50] G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
    [51] J. R. Teague, R. Gerson and W. J. James, Solid State Communications 8, 1073(1970)
    [52] V. R. Palkar, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002).
    [53] M. Mahesh Kumar, V. R. Palkar, K. Srinivas and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).
    [54] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
    [55] M. Polomska, W. Kaczmarek and Z. Pajak, Phys. Stat. Sol. (a) 23, 567(1974).
    [56] J. S. Kim, C. I. Cheon, Y. N. Choi, and P. W. Jang, J. Appl. Phys. 93, 9263 (2003).
    [57] S. K. Singh and H. Ishiwara, Jpn. J. Appl. Phys. 44, L734 (2005).
    [58] S. K. Singh, R. Ueno, H. Funakubo, H. Uchida, S. Koda and H. Ishiwara, Jpn. J. Appl. Phys. 44, 8525 (2005).
    [59] Y. Wang, Q. H. Jiang, H. C. He, and C. W. Nana, Appl. Phys. Lett. 88, 142503 (2006).
    [60] J. Thery, C. Dubourdieu, T. Baron, C. Ternon, H. Roussel, F. Pierre, Chem. Vapor Deposition 13, 232 (2007).
    [61] Y. H. Lee, C. C. Lee, Z. X. Liu, C. S. Liang and J. M. Wu, Electrochem. Solid-State Lett. 9, F38 (2006).
    [62] R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, F. Zavaliche, S. Y. Yang, R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski and S. K. Streiffer, Appl. Phys. Lett. 88, 242904 (2006).
    [63] C. F. Chung and J.M. Wu, Electrochem. Solid-State Lett. 8, F63 (2005).
    [64] H. Béa, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, Appl. Phys. Lett. 87, 072508 (2005).
    [65] H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys. 44, L561 (2005).
    [66] S. R. Das, P. Bhattacharya, R. N. P. Choudhary, and R. S. Katiyar, J. Appl. Phys 99, 066107 (2006).
    [67] Y. W. Li, J. L. Sun, J. Chen, X. J. Meng, and J. H. Chu, Appl. Phys. Lett. 87, 182902 (2005).
    [68] Z. Cheng, X. Wang, C. V. Kannan, K. Ozawa, H. Kimura, T. Nishida, S. Zhang and T. R. Shrout, Appl. Phys. Lett. 88, 132909 (2006).
    [69] X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
    [70] D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, Appl. Phys. Lett. 86, 222903 (2005).
    [71] Y. H. Lee, J. M. Wu, and C. H. Lai, Appl. Phys. Lett. 88, 042903 (2006).
    [72] F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, and J. Zhu, Appl. Phys. Lett. 89, 242914 (2006).
    [73] Y. P. Liu and J. M. Wu, Electrochem. Solid-State Lett. 10, G39 (2007).
    [74] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004).
    [75] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).
    [76] I. Sosnowska, M. Loewenhaupt, W. I. F. Davie, and R. M. Ibberson, Physica B 180, 117 (1992).
    [77] D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, Appl. Phys. Lett. 86, 222903 (2005).
    [78] C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401 (2005).
    [79] I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A: Mater. Sci. Process. 74, S1040 (2002).
    [80] H.H. Kim, J. H. Dho, X. Qi, S. K. Kang, J. L. Macmanus-Driscoll, D. J. Kang, K. N. Kim, and M. G. Blamire, Ferroelectrics 333, 157 (2006).
    [81] J. K. Kim, S. S. Kim, W. J. Kim, and A. S. Bhalla, J. Appl. Phys. 101, 014108 (2007).
    [82] Y. D. Kim, A.P. Seitsonen, and H. Over, Surf. Science 465, 1 (2000).
    [83] K. Reuter and M. Scheffler, Surf. Science 490, 20 (2001).
    [84] C. S. Liang and J. M. Wu, Appl. Phys. Lett. 86, 222903 (2005).
    [85] R. D. Frampton, E. A. Irene, and F. M. d’Heurle, J. Appl. Phys. 62, 2972 (1987).
    [86] F. P. Skeele, R. E. Newnham, and L. E. Cross, J. Am. Ceram. Soc. 71, C263 (1988).
    [87] M. Kuwabara, J. Mater. Sci. Lett. 8, 411 (1989).
    [88] W. H. Kao, S. L. Haberichter, and K. R. Bullock, J. Electrochem. Soc. 139, L105 (1992).
    [89] R. J. Cava, B. Batlogg, G. P. Espinosa, A. P. Ramirez, J. J. Krajewski, W. F. Peck, and A. S. Cooper, Nature 339, 291 (1989).
    [90] A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1075).
    [91] V. V. Bogatko and Y. N. Venevtsev, Sov. Phy. Solid State 22, 705 (1980).
    [92] A. A. Verheijn, W. T. Fu, J. M. Van-Ruitenbeek, A. smits, Q. Xu, and L. J. De Jongh, Solid State Commun. 71, 573 (1989).
    [93] H. Ikushima and S. Hayakawa, Solid State Electron. 9, 921 (1966).
    [94] L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
    [95] M. Kuwabara, T. Kuroda, S. Takahashi, and T. Azuma, Mater. Res. Soc. Symp. Proc. 271, 365 (1992).
    [96] Y. R. Lou and J. M. Wu, Appl. Phys. Lett. 79, 3669 (2001).
    [97] C. S. Liang and J. M. Wu, Appl. Phys. Lett. 87, 022906 (2005).
    [98] P K. Larsen, G. A. C. M. Spierings, R. Cuppens, and G. J. M. Dormans, Microelectron. Eng. 22, 53 (1993).
    [99] R. E. Jones, P. D, Maniar, J. O. Olowolafe, A. C. Campbell, and C. J. Mogab, Appl. Phys. Lett. 60, 1022 (1992).
    [100] G. A. Smolenskii, V. M. Yudin, E. S. Sher, and Y. E. Stolypin, Sov. Phys. JETP 16, 622 (1963).
    [101] P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C 13, 1931 (1980).
    [102] F. Kubel and H. Schmid, Acta Crystallogr., Sect. B 46, 698 (1990).
    [103] G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang and D. Viehland, Appl. Phys. Lett. 86, 182905 (2005).
    [104] K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda and M. Okuyama, Jpn. J. Appl. Phys. 43, L647 (2004).
    [105] R. Bouregba, G. L. Rhun, G. Poullain, and G. Leclerc, J. Appl. Phys. 99, 034102 (2006).
    [106] Y. H. Lee, J. M. Wu, Y. L. Chueh, and L. J. Chou, Appl. Phys. Lett. 87, 172901 (2005).
    [107] R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon and V. G. Keramidas, Appl. Phys. Lett. 61, 1537 (1992).
    [108] H. Doi, T. Atsuki, N. Soyama, G. Sasaki, T. Yonezawa, and K. Ogi, Jpn. J. Appl. Phys. 33, 5159 (1994).
    [109] F. Yan, Y. Wang, H. L. W. Chan and C. L. Choy, Appl. Phys. Lett. 82, 4325 (2003).
    [110] H. Wang, J. Yui, X. Dong, W. Zhou, Y. Wang, Y. Zheng and J. Zhao, Jpn. J. Appl. Phys. 40, 1388 (2001).
    [111] E. S. Lee, D. H. Li, H. W. Chung, and S. Y. Lee, Appl. Surf. Science, 252, 4536 (2006).
    [112] Q. Y. Jiang, E. C. Subbarao, and L. E. Cross, J. Appl. Phys. 75, 7433 (1994).
    [113] C. C. Lee and J. M. Wu, Appl. Surf. Science 253, 7069 (2007).
    [114] J. F. M. Cillessen, M. W. J. Prins, and R. M. Wolf, J. Appl. Phys. 81, 2777 (1997).
    [115] T. Oikawa, M. Aratani, and H. Funakubo, J. Appl. Phys. 95, 3111 (2004).
    [116] B. S. Kang, D. J. Kim, J. Y. Jo, and T. W. Noh, J. G. Yoon, T. K. Song, Y. K. Lee, J. K. Lee, S. Shin and Y. S. Park, Appl. Phys. Lett. 84 3127 (2004).
    [117] Y. Hou, X. H. Xu, H. Wang, M. Wang, and S. X. Shang, Appl. Phys. Lett., 78, 1733 (2001).
    [118] W. T. Fu and D. J. W. Ijdo, Solid state communication, 95, 581 (1995).
    [119] T. Nitta, K. Nagase, S. Hayakawa, and Y. Iida, J. Am. Ceram. Soc., 48, 642 (1965).
    [120] T. K. Song, S. Aggarwal, A. S. Prakash, B. Yang, and R. Ramesh, Appl. Phys. Lett., 71, 2211 (1997).
    [121] S. Prasertchoung, V. Nagarajan, Z. Ma, R. Ramesh, J. S. Cross, and M. Tsukada, Appl. Phys. Lett., 84, 3130 (2004).
    [122] B. S. Kang, J. G. Yoon, D. J. Kim, T. W. Noh, T. K. Song, Y. K. Lee, J. K Lee, and Y. S. Park, Appl. Phys. Lett., 82, 2124 (2003).
    [123] B. S. Kang, J. G. Yoon, T. K. Song, S. Seo, Y. W. So, and T. W. Noh, Jpn. J. Appl. Phys., 41, 5281 (2002).
    [124] W. Jo, D. C. Kim, and J. W. Hong, Appl. Phys. Lett., 76, 390 (2000).
    [125] K. H. Xue, Z. G. Zhang, D. Xie, C. G. Wei, T. Z. Liu, T. L. Ren, and L. T. Liu, Integr. Ferroelectrics, 79, 81 (2006).
    [126] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O. Auciello, and T. Venkatesan, Appl. Phys. Lett., 71, 3492 (1997).
    [127] R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys., 44, 3379 (1973).
    [128] Y. R. Luo and J. M. Wu, Appl. Phys. Lett. 79, 3669 (2001).
    [129] D. Maes, J. L. Everaert, L. Goux, J. G. Lisoni, V. Paraschiv, M. Schwitters, L. Haspeslagh, D. J. Wouters, C. Artoni, C. Caputa, P. Casella, G. Corallo, G. Russo, R. Zambrano, H. Monchoix, and L. Vanautryve, Integr. Ferroelectr. 61, 71 (2004).
    [130] L. Goux, D. Maes, J. G. Lisoni, H. V. Meeren, V. Paraschiv, L. Haspeslagh, C. Artoni, G. Russo, R. Zambrano and D. J. Wouters, Microelectronic Engineering 83, 2027 (2006).
    [131] Y. K. Wang and T. Y. Tseng, and P. Lin, Electrochem. Solid-State Lett. 7, F1 (2004).
    [132] Y. H. Lee, C. S. Liang and J. M. Wu, Electrochem. Solid-State Lett. 8, F55 (2005).
    [133] S. Yokoyama, T. Ozeki, T. Oikawa and H. Funakubo, Integr. Ferroelectr. 59, 1429 (2003).
    [134] J. F. Scott, Jpn. J. Appl. Phys. 38, 2272 (1999).
    [135] P. Y. Chu, R. E. Jones, P. Zurcher, D. J. Taylor, B. Jiang, S. J. Gillespie, Y. T. Lii, M. Kottke, P. Fejes, and W. Chen, J Mater. Res. 11, 1065 (1996).
    [136] L. E. Katz, in VLSI Technology, 2nd ed., edited by S. M. Sze (McGraw Hill, New York, 1988), p. 127.
    [137] J. P. Han and T. P. Ma, Appl. Phys. Lett. 71, 1267 (1997).
    [138] S. Aggarwal, S. R. Perusse, H. D. Drew, T. Venkatesan, R. Ramesh, D. B. Romero, V. B. Podobedov, and A. Weber, Appl. Phys. Lett. 73, 1973 (1998)
    [139] Y. K. Lee, Ch. J. Kim, I. S. Lee, J. K. Lee, and Y. S. Park, Appl. Phys. Lett. 81, 1857 (2002).
    [140] K. Kushida-Abdelghafar, H. Miki, K. Torii, and Y. Fujisaki, Appl. Phys. Lett. 69, 3188 (1996).
    [141] J. Im, O. Auciello, A. R. Krauss, D. M. Gruen, R. P. H. Chang, S. H. Kim and A. I. Kingon, Appl. Phys. Lett. 74, 1162 (1999).
    [142] Y. Shimamoto, K. Kushida-Abdelghafar, H. Miki, and Y. Fujisaki, Appl. Phys. Lett. 70, 3096 (1997).
    [143] C. C. Lee, J. M. Wu, and C. P. Hsiung, Appl. Phys. Lett. 90, 182909 (2007).
    [144] Webpage: www.fujitsu.com/us/news/pr/fma_20060802.html
    [145] W. Jo, D. C. Kim and J. W. Hong, Appl. Phys. Lett. 76, 390 (2000).
    [146] C Jovalekic, M. Pavlovic, P. Osmokrovic, and Lj. Atanasoska, Appl. Phys. Lett. 72, 1051 (1998).
    [147] V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, and A. Goswami, J. Electron. Spectrosc. Relat. Phenom. 25, 181 (1982).
    [148] C. C. Lee and J. M. Wu, Appl. Phys. Lett. 91 (10): 102906 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE