簡易檢索 / 詳目顯示

研究生: 古馥瑋
Gu, Fu-Wei
論文名稱: 電容式耦合矽烷/氫氣電漿模擬研究 — 物理化學機制與操作參數關聯性之分析與探討
Study of a capacitively coupled silane/hydrogen discharge by computer simulation - physical/chemical mechanism and parametric analysis
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 陳金順
王敏全
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 電漿輔助化學氣相沈積SiH4/H2 電漿電漿模擬
外文關鍵詞: PECVD, SiH4/H2 plasma, plasma simulation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電漿輔助化學氣相沈積(PECVD)系統為目前最主要沈積非晶矽與微晶矽薄膜的方式。在研究上希望能提昇沈積速率、提高薄膜品質與高均勻性等目標,但卻不容易同時達成,原因是腔體裡電漿的性質難以掌控,並在不同參數下電漿的性質會有許多變化,是不容易預測的。然而實驗上關於電漿裡粒子的變化很難量測與分析,所以本研究使用二維的流體模型(ESI CFD-ACE+)模擬SiH4/H2電漿。藉由模擬的方式瞭解其中電漿的基本特性與活性粒子的密度及分佈情況,並且分析在不同功率、壓力與H2稀釋比下電漿的變化。
      在模擬的結果中,電漿裡重要活性粒子SiH2與SiH3分佈情形的差異,主要是由產生的機制不同所造成。SiH2主要是由SiH4與電子碰撞產生,SiH3則是由SiH4與H的化學反應生成佔大部分,所以粒子的分佈情形不同。進一步分析發現,由於不同的產生方式,使得SiH2與SiH3隨壓力變化的趨勢相反。SiH2隨壓力上升而下降,SiH3則隨壓力上升而上升,也使得利用OES 量測SiH*光譜強度不能正確反應SiH3粒子在壓力下的影響。
      最後我們以SiH3通量密度來表示沈積速率在參數改變下的變化。以H/SiH3通量密度的比值代表矽薄膜結晶率的改變,並與實驗作比較,得到了相近的結果。


      Plasma Enhance Chemical Vapor Deposition (PECVD) system is the mainly method to deposit amorphous silicon and micro-crystal film currently. It is a difficult task to enhance the deposition rate, quality of thin film and high uniformity deposition at the same time, because the quality of plasma in chamber is not easy to control. Besides, the qualities of plasma varies under different parameters, which increase the difficulty to predict them. Also, it is hard to measure and analyze the variation of particles in plasma experimentally; therefore, this study applies two dimensional fluid model in ESI CFD-ACE+ to simulate SiH4/H2 plasma. Though simulation, we can understand the basic qualities of plasma and the density and distribution of radicals, and analyze the variations of different powers, pressures and H2 dilution ratios in plasma.
      In the results of simulations, the different distributions of the important radicals ( SiH2 and SiH3 ) in plasma chiefly due to different production mechanisms. SiH2 is produced by the collisions between SiH4 and electrons; SiH3 is generated by the chemical reaction between SiH4 and H. With further analyzing, we realize that SiH2 and SiH3 have opposite density trend with the variation of pressure is because of different production mechanisms. In other words, with the increase of pressure, SiH2 decrease while SiH3 increase. Thus, the SiH* spectrum intensity measured by OES can't accurately response to the effects on SIH3 particles under different pressures.
      Finally, the change of SiH3 flux under different variation of parameters is used to represent the effect of deposition rates of thin silicon film. The ratio of H/SiH3 flux represents the variation of crystallized rate of silicon thin film. Compared with the experiment, comparative results are achieved in the simulations .

    中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 簡介 第二章 文獻回顧 § 2.3 SiH4電漿裡的化學反應與傳輸係數 § 2.4 電漿模擬文獻回顧 § 2.5 文獻回顧總結 第三章 物理模型與研究方法 § 3.1 流體模型 § 3.2 幾何結構與邊界條件 § 3.3 反應式資料庫 § 3.4 起始條件 § 3.5 軟體簡介 第四章 模擬結果 § 4.1 模擬條件及起始狀況 § 4.2 隨時變之模擬結果 4.2.1 基本放電特性 4.2.2 H、SiH2與SiH3粒子的分析 4.2.3 一個電壓週期內的變化 § 4.3輸入功率的影響 4.3.1輸入功率對基本放電特性的影響 4.3.2輸入功率對主要鍍膜粒子的影響 § 4.4不同壓力的放電特性 4.4.1壓力對基本放電特性的影響 4.4.2壓力對主要鍍膜粒子的影響 § 4.5不同流量比的影響 4.5.1不同流量比對基本放電特性的影響 4.5.2不同流量比對鍍膜粒子的影響 第五章 結論及未來工作 § 5.1總結 § 5.2未來工作 附錄A 附錄B 反應式的Cross-section 附錄C 電漿模型裡的漂移係數與擴散係數

    1. Kushner, M.J., A MODEL FOR THE DISCHARGE KINETICS AND PLASMA CHEMISTRY DURING PLASMA ENHANCED CHEMICAL VAPOR-DEPOSITION OF AMORPHOUS-SILICON. Journal of Applied Physics, 1988. 63(8): p. 2532-2551.
    2. Grill, A., ed. Cold Plasma in Materials Fabrication : From Fundamentals to Applications. 1994, IEEE Press: New York.
    3. Chapman, B., ed. Glow Discharge Processes. 1980, Wiley: New York.
    4. Jef Poortmans, V.A., ed. Thin Film Solar Cells: Fabrication, Characterization and Applications. 2006, Wiley.
    5. Kuo, Y., K. Okajima, and M. Takeichi, Plasma processing in the fabrication of amorphous silicon thin-film-transistor arrays. Ibm Journal of Research and Development, 1999. 43(1-2): p. 73-88.
    6. Fauchet, P.M., The integration of nanoscale porous silicon light emitters: materials science, properties, and integration with electronic circuitry. Journal of Luminescence, 1998. 80(1-4): p. 53-64.
    7. Matsui, T., et al., Carrier collection characteristics of microcrystalline silicon-germanium p-i-n junction solar cells. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2468-2471.
    8. Yamaguchi, M., T. Takamoto, and K. Araki, Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Materials and Solar Cells, 2006. 90(18-19): p. 3068-3077.
    9. Tsao, C.Y., et al., Influence of hydrogen on structural and optical properties of low temperature polycrystalline Ge films deposited by RF magnetron sputtering. Journal of Crystal Growth, 2010. 312(19): p. 2647-2655.
    10. .
    11. Fujiwara, H., M. Kondo, and A. Matsuda, Depth profiling of silicon-hydrogen bonding modes in amorphous and microcrystalline Si : H thin films by real-time infrared spectroscopy and spectroscopic ellipsometry. Journal of Applied Physics, 2002. 91(7): p. 4181-4190.
    12. Heintze, M. and R. Zedlitz, New diagnostic aspects of high rate a-Si:H deposition in a VHF plasma. Journal of Non-Crystalline Solids, 1996. 198: p. 1038-1041.
    13. Matsuda, A., Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films, 1999. 337(1-2): p. 1-6.
    14. Perrin, J., O. Leroy, and M.C. Bordage, Cross-sections, rate constants and transport coefficients in silane plasma chemistry. Contributions to Plasma Physics, 1996. 36(1): p. 3-49.
    15. Nienhuis, G.J., et al., A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments. Journal of Applied Physics, 1997. 82(5): p. 2060-2071.
    16. Fantz, U., Spectroscopic diagnostics and modelling of silane microwave plasmas. Plasma Physics and Controlled Fusion, 1998. 40(6): p. 1035-1056.
    17. Leroy, O., et al., Two-dimensional modelling of SiH4-H-2 radio-frequency discharges for a-Si : H deposition. Plasma Sources Science & Technology, 1998. 7(3): p. 348-358.
    18. Salabas, A., G. Gousset, and L.L. Alves, Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges. Plasma Sources Science & Technology, 2002. 11(4): p. 448-465.
    19. De Bleecker, K., et al., Numerical investigation of particle formation mechanisms in silane discharges. Physical Review E, 2004. 69(5).
    20. CFD-ACE V2010.0 Modules Manua. 2010.
    21. Kushner, M.J., Simulation of the gas-phase processes in remote-plasma-activated chemical-vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures. Journal of Applied Physics, 1992. 71(9): p. 4173-4189.
    22. Kurachi, M. and Y. Nakamura, ELECTRON COLLISION CROSS-SECTIONS FOR THE MONOSILANE MOLECULE. Journal of Physics D-Applied Physics, 1989. 22(1): p. 107-112.
    23. Bolsig+ Database.
    24. Krishnakumar, E. and S.K. Srivastava, IONIZATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT. Contributions to Plasma Physics, 1995. 35(4-5): p. 395-404.
    25. Perrin, J., et al., DISSOCIATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT. Chemical Physics, 1982. 73(3): p. 383-394.
    26. Haaland, P., DISSOCIATIVE ATTACHMENT IN SILANE. Journal of Chemical Physics, 1990. 93(6): p. 4066-4072.
    27. Buckman, S.J. and A.V. Phelps, VIBRATIONAL-EXCITATION OF D2 BY LOW-ENERGY ELECTRONS. Journal of Chemical Physics, 1985. 82(11): p. 4999-5011.
    28. 張雅嵐, 微晶矽薄膜電漿輔助化學氣相沉積製程之電漿放射光譜量測分析研究. 國立清華大學工程與系統科學系碩士論文, 2010.
    29. Zhang, X.D., et al., Modeling and experiments of high-pressure VHFSiH4/H-2 discharges for higher microcrystalline silicon deposition rate. Thin Solid Films, 2008. 516(20): p. 6829-6833.
    30. Basner, R., et al., Dissociative ionization of silane by electron impact. International Journal of Mass Spectrometry, 1997. 171(1-3): p. 83-93.
    31. Janev, R.K. and D. Reiter, Collision processes of hydride species in hydrogen plasmas: III. The silane family. Contributions to Plasma Physics, 2003. 43(7): p. 401-417.
    32. Tawara, H. and T. Kato, TOTAL AND PARTIAL IONIZATION CROSS-SECTIONS OF ATOMS AND IONS BY ELECTRON-IMPACT. Atomic Data and Nuclear Data Tables, 1987. 36(2): p. 167-353.
    33. Straub, H.C., et al., Absolute partial cross sections for electron-impact ionization of H-2, N-2, and O-2 from threshold to 1000 eV. Physical Review A, 1996. 54(3): p. 2146-2153.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE