簡易檢索 / 詳目顯示

研究生: 許惠婷
Hui-Ting Hsu
論文名稱: 選擇開放原始碼或付費軟體? 動態擴散研究
To Adopt Open Source or Proprietary Software? The Diffusion Dynamics.
指導教授: 陳鴻基
Houn-Gee Chen
鄭興
Hsing K. Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 56
中文關鍵詞: 開放原始碼軟體Bass理論與模型產品擴散擁有成本口碑效應
外文關鍵詞: Open Source Software, Bass Model, Product Diffusion, Ownership Cost, Word-of-Mouth Effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開放原始碼被喻為近年來最有發展前景的軟體技術之一,許多成功的開放原始碼軟體儼然已成為使用者在選擇付費軟體以外的替代方案。過去的開放原始碼軟體研究多半著重於經濟影響、社群的功能與運作、軟體開發者的貢獻動機,以及近期的實際企業建置案例。
    本研究為首度提出以Bass理論為架構的軟體擴散模型,並於傳統常見於行銷研究的口碑效應及外部因素之外,進一步整合使用者擁有成本與軟體品質為決策影響要素,以檢視開放原始碼軟體與付費軟體之間的動態競爭情形。本研究並且實際以網頁伺服器軟體—開放原始碼軟體Apache與付費軟體Microsoft IIS—為驗証。
    研究結果顯示:(1)軟體品質及使用者擁有成本都無法影響開放原始碼軟體使用者的採用決策。(2)開放原始碼軟體不常見於大眾傳媒,一方面為缺乏資源,一方面為其使用者依靠口碑效應去接收產品訊息,而不習慣於外部刺激。(3)使用者擁有成本及口碑效應對擴散付費軟體有負面影響。(4)付費軟體仰賴大眾傳媒等外部刺激因素去增加使用者對其印象。
    因此本研究建議開放原始碼軟體應持續發展社群間的合作與競爭,使開放原始碼軟體專案產生自然淘汰;同時建議付費軟體不宜一味仰賴大眾傳媒工具,亦需注意品質與使用者擁有成本以符合顧客滿意度,否則負面口碑效應將會使潛在使用者卻步。


    Open Source Software (OSS), forecasted as one of the most promising technologies, has become an under-budget alternative in addition to costly proprietary software. Extant literature of OSS focuses on community functions, developers’ motivation, economic effects, and recent implementation cases. This thesis is among the first to examine the competition dynamics between OSS and proprietary software by proposing a Generalized Bass Model-based diffusion model. In addition to the traditional innovation and imitation coefficients in marketing, this model integrates software ownership cost and software quality into it. Moreover, this research applies the model to empirically examine the web server software market where Apache and Microsoft IIS compete with each other.
    Under the competitive circumstance of software, this research finds that both software quality and ownership cost have no significant impact on users’ choices toward OSS. These users do not feel excited about getting exposed to external marketing factors because the diffusion of OSS is mostly through word-of-mouth effect. Hence this research suggests that OSS promotes the cooperation and competition among OSS communities. Well functioned OSS communities will naturally edge out the unqualified ones and produce decent programs to be widely adopted. This research also shows that proprietary software heavily relies on mass media to impress potential customers. Meanwhile, proprietary software firms suffer negative influence from both word-of-mouth effect and ownership cost. The managerial implication is that proprietary software has to set a reasonable license price and provide overall satisfied products; otherwise, customers’ severe criticism would be widely spread through word-of-mouth effect and discourages potential customers from adoption.

    TABLE OF CONTENTS CHAPTER 1: INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Problems 4 1.4 Structure of the Thesis 6 CHAPTER 2: LITERATURE REVIEW 7 2.1 Open Source Software 7 2.2 Diffusion Model 12 CHAPTER 3: RESEARCH MODEL AND METHODOLOGY 17 3.1 Research Model and Hypotheses 17 3.2 Research Methodology 25 CHAPTER 4: RESEARCH FINDINGS 32 4.1 Empirical results 32 4.2 Fit statistics 41 CHAPTER 5: CONCLUSION 46 REFRENCES 49 List of Tables Table 1: Summary of Research Findings 33 Table 2: Empirical Results of Parameter Tests 34 Table 3: Summary of Fit Statistics 42 List of Figures Figure 1: Monthly Data on Adoption of Apache and IIS 26 Figure 2: The Cumulative Adoption of Web Server Market, Apache, and IIS 27 Figure 3: Monthly Bug Counts of Apache and IIS 30 Figure 4: Monthly Ownership Cost of Apache and IIS 30 Figure 5: The Prediction of OSS 42 Figure 6: The Prediction of Proprietary Software 43 Figure 7: Volume of Web Servers in The Last Decade 43

    Abiteboul, S., Leroy, X. Vrdoljak, B., Bryce, C., Cosmo, R. D., Dittrich, K. R., Fermigier, S., Milo, T., Sagi, A., Shtossel, Y., Laurière, S., Lepied, F., Pop, R., Panto, E., & Smets, J. P. 2005. EDOS: Environment for the development and distribution of open source software. Proceedings of the First International Conference on Open Source Systems, 1: 66-70.
    Bass, F. M. 1969. A new product growth for model consumer durables. Management Science, 15 (5): 215-227.
    Bass, F. M. 2004. A new product growth for model consumer durables. Management Science. 50:1825-1832.
    Bass, F. M., Krishnan, T. V., & Jain, D.C. 1994. Why the Bass model fits without decision variables. Marketing Science, 13 (3): 203-223.
    Bennett, W. L., 2003. Communicating global activism. Strengths and vulnerabilities of networked politics. Information, Communication & Society 6 (2): 143-168.
    Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G. & Merritt, M.J. 1978. Characteristics of software quality. TRW Serious of Software Technology, 11. North Holland, NY.
    Bonaccorsi , A. & Rossi, C. 2003. Why open source software can succeed. Research Policy, 32: 1243-1258.
    Crowston, K., Annabi, H., & Howison, J. 2003 Defining open source software project success. Twenty-Fourth Internailnal Conference on Information Systems. Seattle, WA.
    Dalle J. M., & Jullien, N., 2002. Open-source vs. proprietary software. Guest lecture at ESSID Summer School, Cargèse. Online paper at http://opensource.mit.edu/online_papers.php (Accessed August 2004)
    Dibona, C., Ockman, S., & Stone, M. January 1999. Open sources: Voices from the open source revolution. O’Reilly Media, Inc. (http://www.oreilly.com/catalog/opensources/book/toc.html )
    Dromey, R. G. 1995. A Model for Software Product Quality, IEEE Transaction on Software Engineering, 21 (2):146-162
    Farmer, R. A., Gruba, P., & Hughes, B. 2004. Towardsprinciples for call software quality improvement. In Proceedings of the 11th International conference onCALL, :103–113, University of Antwerp, Belgium
    Fenton, N. 1991. Software metrics: A rigorous approach: 42-62. Chapman and Hall
    Fitzgerald, B. & Kenny, T. 2004. Developing and information systems infrastructure with open source software. IEEE Software, 50-55.
    Forsberg, E. 2003. Man in the middle – attack against Microsoft terminal services. Windows IT Pro magazine. (http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=38589&DisplayTab=Article )
    Franke, N., & von Hippel, E. 2003. Satisfying heterogeneous user needs via innovation toolkits: the case of Apache security software. Research Policy, 32: 1199-1215
    Fuggetta, A. 2003. Open source software: an evaluation. Journal of Systems and Software, 66(1): 77-90.
    Gatignon, H., Eliashberg, J. & Robertson, T. S. 1989. Modeling multinational diffusion patterns: An efficient methodology. Marketing Science, 8 (3): 231-247
    Givon, M., Mahajan, V., & Muller, E. 1995. Software piracy: Estimation of the lost sales and the impact on the software diffusion. Journal of Marketing, 59 (1): 29-37
    Godfrey, M. W. & Tu, Q. 2000. Evolution in open source software. International Conference on Software Maintenance, 131-142. (http://plg2.math.uwaterloo.ca/~migod/papers/icsm00.pdf )
    Goode, S. 2005. Something for nothing: management rejection of open source software in Australia’s top firms. Information & Management, 42: 669-681.
    Gross, N., Stepanek M., Port , O., & Carey, J. 1999. Software hell: Is there a way out? Business Week, 12:104-118
    Gujarati, D. N. 1995. Basic econometrics. (3rd ed.) New Aster: Mc-Graw-Hill
    Hars, A. & Ou, S. 2002. Working for free? Motivations for participating in open-source projects. International Journal of Electronic Commerce, 6(3): 25-40
    Hertel, G.., Niedner, S., & Hermann, S. 2003. Motivation of software developers in open source projects: An internet-based survey of contributors to the Linux kernel. Research Policy, 32: 1159-1177
    Ingram, M., 2000. The Microsoft law suit, software development and the capitalist market. International Committee of the Fourth International (http://www.wsws.org/articles/2000/may2000/micr-m02.shtml )
    Islam T. & Meade N, 1997. The diffusion of successive generations of a technology: A more general model. Technological Forecasting and Social Change, 56 (1): 49-60.
    Jullien, N., Clėment-fontaine, M., & Dalle, J. M., 2002. RNTL project. New economic models, new software industry economy. (http://opensource.mit.edu/papers/fichier_rapporte.pdf )
    Kalish, S. 1985. A new product adoption model with price, advertising, and uncertainty. Management Science, 31 (12) :1569-1585.
    Kaner, C. & Pels, D. 1997. Software customer dissatisfaction. Software QA, 4 (3) (http://www.badsoftware.com/stats.htm)
    Katz, M. L. & Shapiro, C. 1986. Technology adoption in the presence of network externalities. Journal of Political Economy, 94 (4): 822–841.
    Khaddaj, S. & Horgan, G. 2005. A proposed adaptable quality model for software quality assurance. Journal of Computer Sciences, 1 (4): 481-486
    Krishnamurthy, S. 2002. Cave or community? An empirical examination of 100 mature open source projects. First Monday, 7 (6). (http://firstmonday.org/issues/issue7_6/krishnamurthy/index.html)
    Krishnamurthy, S. 2003. A managerial overview of open source software. Business Horizons, 46 (5): 47-56
    Krishnan, T. V., Bass F. M., & Jain, D. C., 1999. Optimal pricing strategy for new products. Management Science, 45 (12) : 1650-1663
    Krishnan, T.V., Bass, F. M., & Kumar, V. 2000 Impact of a late entrant on the diffusion of a new product / service. Journal of Marketing Research, 37 (2): 269-278.
    Kumar, V. R. January 13, 2003. Open source software to gain currency: PwC., Business line. ( http://www.blonnet.com/2003/01/13/stories/2003011300450200.htm )
    Lakhani, K. R. & von Hippel, E. 2002. How open source software works: “free” user-to-user assistance. Research Policy, 32: 923-943.
    Lakhani, K. R. & Wolf, R.G. 2003.Why hackers do what they do: Understanding motivation and effort in free/open source software projects. Working Paper No. 4425-03. MIT Sloan.
    Lee, P., 2001. Behavioral Model of Online Purchasers in E-Commerce Environment. Electronic Commerce Research, 2: 75-85
    Lerner J. & Tirole, J. 2001. The open source movement: Key research questions. European Economic Review, 45 : 819-826
    Lerner, J. & Tirole, J. 2002. Some simple economics of open source. Journal of Industrial Economics, 50(2): 197-234.
    Madey, G., Freech, V., & Tynan, R. 2002. The open source software development phenomenon: An analysis based on social network theory. Eighth Americas Conference on Information Systems: 1806-1813. Dallas, TX.
    Mahajan, V., Muller, E., & Kerin, R.A. 1984. Introduction strategy for new products with positive and negative word-of-mouth. Management Science, 30 (12): 1389-1404.
    Minasi, M. 2000. Software Industry’s Bugs Unacceptable. Houston Chronicle, Houston, TX
    Mishra, B., Prasad, A., & Raghunathan, S. 2002. Quality and profits under open source versus closed source. In L. Applegate, R. Galliers, and J. I. DeGross (Eds.), Proceedings of the Twenty-Third International Conference on Information Systems: 349-363. Barcelona: AIS.
    Mockus, A., Fielding, R. T., & Herbsleb, J. D. 2000. A case study of open source software development: The apache server. In I. Limerick (Ed.), International Conference on Software Engineering: 263-272. ACM Press.
    Mockus, A., Fielding, R. T., & Herbsleb, J. D. 2002. Two case studies of open source software development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology, 11 (3): 309-346
    Norton, J. A. & Bass, F. M. 1987. A diffusion theory model of adoption and substitution for successive generations of high technology products. Management Science, 33 (9): 1069-1086.
    Perens, B. July 5, 1997. Debian social contract, Version 1.0 (http://debui.vlsm.org/social_contract.1.0 ).
    Pfaffenberger, Bryan 2000. Software conspiracy. Computers Today, 6: 16-31.
    Rajala, N., Campara, D. & Mansurov N. 1998. inSight reverse engineering CASE tool. In Proceedings of the ICSE’99. Los Angeles
    Rasch, C. M., 2001. The wall street performer protocol: Using software completion bonds to fund open source software development. First Monday, 6 (6)
    Raymond, E., 1999. The cathedral and the bazaar: Musings on Linux and open source from an accidental revolutionary. California: O’Reilly and Associates
    Ricadela, Aaron. 2005. Got an open-source problem? Red hat wants to be your help desk. Information Week. Dec 6.
    Rosenberg, D. K. 2000. Open source: The unauthorized white papers. IDG Book Worldwide, Inc.
    Shah, S. K., 2005 Open beyond software. Open Sources 2, (eds. Chris Dibona, Danese Cooper and Mark Stone) O’Reilly Media, Sebastopol, CA
    Sultan, F., Farley, J. U., & Lehmann, D. R., 1990. A meta-analysis of applications of diffusion models. Journal of Marketing Research, 27: 70-77
    van den Bulte, C. 2000. New Product Diffusion Acceleration: Measurement and Analysis. Marketing Science, 19 : 366-380.
    Von Hippel, E. 2001. Innovation by user communities: Learing from open-source software. MIT Sloan Management Review: 82-86
    von Krogh, G., Spaeth, S., & Lakhani, K. R. 2003. Community, joining, and specialization in open source software innovation: a case study. Research Policy, 32:1217-1241
    Waring, T. & Maddocks, P. 2005. Open source software implementation in the UK public sector: Evidence from the field and implications for the future. International Journal of Information Management, 25: 411-428.
    Wheeler, D. A. December 31, 2003. Why open source software/free software (OSS/FS)? Look at the number! (http://www.dwheeler.com/oss_fs_why.html).
    Wohlin, C., Lundberg, L.& Mattsson, M. 2005. Special issue: Trade-off Analysis of software quality. Software Quality Journal, 13: 327-328.
    Wright, M., Upritchard, C. & Lewis, T. 1997. A validation of the Bass new product diffusion model in New Zealand. Marketing Bulletin, 8:15-29.
    Zeitlyn, D. 2003. Gift economies in the development of open source software: anthropological reflections. Research Policy, 32: 1287-1291
    Zhao, L. & Elbaum, S. 2002. Quality assurance under the open source development model. The Journal of Systems and Software, 66: 65-75

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE