簡易檢索 / 詳目顯示

研究生: 陳映如
Chen, Ying-Ru
論文名稱: 花狀氧化銅成長在奈米碳管自支撐薄膜於 超級電容之研究
Study of Growing Flower-like CuO on Free-standing Carbon Nanotube as an electrode for Supercapacitor
指導教授: 李紫原
Lee, Chi-Young
口試委員: 裘性天
Chiu, Hisn-Tien
徐文光
Hsu, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 氧化銅奈米碳管超級電容
外文關鍵詞: flower-like cupric oxide, carbon nanotube, supercapacitor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米花狀氧化銅於本研究中利用水相化學反應,以檸檬酸鈉為螯合劑,加入硫酸銅及氫氧化鈉合成。奈米花狀氧化銅直徑約為200至300奈米,BET比表面積為53.1 m2/g,約為市售奈米氧化銅粉末(~29 m2/g)的兩倍。
    成長奈米花狀氧化銅的奈米碳管紙在電解液1 M氫氧化鈉做電化學循環伏安法量測,可於-1.2至0.2 V中看到氧化還原反應。奈米花狀氧化銅具有高比表面積且可有多價態的轉換可以同時貢獻電雙層電容和擬電容,此外輕薄的奈米碳管紙可以降低電容的總重量,使成長奈米花狀氧化銅的奈米碳管紙成為具有發展超級電容潛力的電極。


    In this study, flower-like CuO grown on carbon nanotube paper was prepared via aqueous-based chemical reaction using copper sulfate as copper source along with sodium hydroxide, and trisodium citrate as chelating agent. The as-prepared flower-like CuO is about 250 nm in diameter. The BET surface area of flower-like CuO (53.1 m2/g) is much larger than that of commercial CuO nanopowder (~29 m2/g).
    Cyclic voltammetry showed redox potential between -1.2 V and 0.2 V in sodium hydroxide. Due to the high surface area and multi-oxidation state, flower-like CuO can provide both electric double layer capacitance and pseudocapacitanc. Furthermore, lightweight carbon nanotube paper can reduce the total weight of electrode. To sum up, the flower-like CuO/carbon nanotube paper is a promising electrode for supercapacitors.

    目錄 摘要 I Abstract II 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 氧化銅基本性質 3 2.2 氧化銅合成方法 4 2.2.1電鍍法 4 2.2.2高溫氧化法 5 2.2.3水熱合成法 6 2.3 超級電容的簡介與發展 8 2.3.1儲能系統簡介 8 2.3.2超級電容簡介 10 2.4 超級電容的儲電原理及材料介紹 12 2.4.1電雙層電容儲電原理 12 2.4.2擬電容儲電原理 16 2.4.3電雙層電容常見材料 18 2.4.4擬電容常見材料 21 2.5 氧化銅之電化學表現及超級電容研究 24 2.5.1氧化銅之電化學表現 24 2.5.2氧化銅之超級電容研究 26 第三章 實驗方法 28 3.1 實驗藥品 28 3.2 合成步驟 29 3.2.1合成奈米花狀氧化銅粉末 29 3.2.2成長奈米花狀氧化銅於鎳箔 30 3.2.3製作奈米碳管自支撐薄膜 30 3.2.4成長奈米花狀氧化銅於奈米碳管紙 31 3.2.5合成含有奈米花狀氧化銅及奈米碳管的自支撐薄膜 31 3.3 實驗儀器 32 3.4 超級電容測試 35 3.4.1電化學分析 35 3.4.2電容的計算方式 36 第四章 結果與討論 38 4.1 奈米花狀氧化銅之形貌與性質鑑定 38 4.2 成長奈米花狀氧化銅於鎳箔 41 4.2.1 成長奈米花狀氧化銅於鎳箔之形貌與性質鑑定 41 4.2.2 成長奈米花狀氧化銅於鎳箔之電化學表現 44 4.3 製作奈米碳管自支撐薄膜 48 4.4 成長奈米花狀氧化銅於奈米碳管紙 49 4.4.1 成長奈米花狀氧化銅於奈米碳管紙之形貌與性質鑑定 49 4.2.2 成長奈米花狀氧化銅於奈米碳管紙之電化學表現 52 4.2.3 比較不同三種含有氧化銅及奈米碳管之電極 57 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62 第六章 參考文獻 63

    1. Yang, J.; Jiang, L.-C.; Zhang, W.-D.; Gunasekaran, S., A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 2010, 82, 25-33.
    2. Patake, V.; Joshi, S.; Lokhande, C.; Joo, O.-S., Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Materials Chemistry and Physics 2009, 114, 6-9.
    3. Nakaoka, K.; Ueyama, J.; Ogura, K., Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. Journal of the Electrochemical Society 2004, 151, C661-C665.
    4. Jiang, X.; Herricks, T.; Xia, Y., CuO nanowires can be synthesized by heating copper substrates in air. Nano Letters 2002, 2, 1333-1338.
    5. Kaur, M.; Muthe, K.; Despande, S.; Choudhury, S.; Singh, J.; Verma, N.; Gupta, S.; Yakhmi, J., Growth and branching of CuO nanowires by thermal oxidation of copper. Journal of Crystal Growth 2006, 289, 670-675.
    6. Figueiredo, V.; Elangovan, E.; Goncalves, G.; Barquinha, P.; Pereira, L.; Franco, N.; Alves, E.; Martins, R.; Fortunato, E., Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science 2008, 254, 3949-3954.
    7. Lu, J.; Xu, W.; Li, S.; Liu, W.; Javed, M. S.; Liu, G.; Hu, C., Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. Journal of Materials Science 2018, 53, 739-748.
    8. Titirici, M.-M.; Antonietti, M.; Thomas, A., A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chemistry of Materials 2006, 18, 3808-3812.
    9. Volanti, D.; Keyson, D.; Cavalcante, L.; Simões, A. Z.; Joya, M.; Longo, E.; Varela, J. A.; Pizani, P.; Souza, A., Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. Journal of Alloys and Compounds 2008, 459, 537-542.
    10. Zhang, X.; Shi, W.; Zhu, J.; Kharistal, D. J.; Zhao, W.; Lalia, B. S.; Hng, H. H.; Yan, Q., High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 2011, 5, 2013-2019.
    11. Yung, W. K.; Sun, B.; Meng, Z.; Huang, J.; Jin, Y.; Choy, H. S.; Cai, Z.; Li, G.; Ho, C. L.; Yang, J., Additive and photochemical manufacturing of copper. Scientific Reports 2016, 6, 39584.
    12. Heinemann, M.; Eifert, B.; Heiliger, C., Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Physical Review B 2013, 87, 115111.
    13. Dar, M.; Kim, Y.; Kim, W.; Sohn, J.; Shin, H., Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science 2008, 254, 7477-7481.
    14. Jin, Z.; Zhang, X.; Li, Y.; Li, S.; Lu, G., 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications 2007, 8, 1267-1273.
    15. Saravanan, R.; Karthikeyan, S.; Gupta, V.; Sekaran, G.; Narayanan, V.; Stephen, A., Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C 2013, 33, 91-98.
    16. Gao, X.; Bao, J.; Pan, G.; Zhu, H.; Huang, P.; Wu, F.; Song, D., Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. The Journal of Physical Chemistry B 2004, 108, 5547-5551.
    17. Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U., Mesoporous CuO Particles Threaded with CNTs for High‐Performance Lithium‐Ion Battery Anodes. Advanced Materials 2012, 24, 4451-4456.
    18. Dubal, D. P.; Gund, G. S.; Holze, R.; Jadhav, H. S.; Lokhande, C. D.; Park, C.-J., Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Transactions 2013, 42, 6459-6467.
    19. Park, K.; Lee, J.-S., Controlled synthesis of Ni/CuO x/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching. Scientific Reports 2016, 6, 23069.
    20. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y., Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of Materials 2006, 18, 867-871.
    21. Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M., Local CuO nanowire growth on microhotplates: In situ electrical measurements and gas sensing application. ACS Sensors 2016, 1, 503-507.
    22. Jiang, L.-C.; Zhang, W.-D., A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics 2010, 25, 1402-1407.
    23. Hsieh, C.-T.; Chen, J.-M.; Lin, H.-H.; Shih, H.-C., Field emission from various CuO nanostructures. Applied Physics Letters 2003, 83, 3383-3385.
    24. Zhu, Y.; Yu, T.; Cheong, F.; Xu, X.; Lim, C.; Tan, V.; Thong, J.; Sow, C., Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology 2004, 16, 88.
    25. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: 2011, pp 171-179.
    26. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-935.
    27. Kang, B.; Ceder, G., Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190.
    28. Springer, T. E.; Zawodzinski, T.; Gottesfeld, S., Polymer electrolyte fuel cell model. Journal of the Electrochemical Society 1991, 138, 2334-2342.
    29. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D., Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews 2007, 107, 3904-3951.
    30. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38, 2520-2531.
    31. Conway, B.; Birss, V.; Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources 1997, 66, 1-14.
    32. Augustyn, V.; Simon, P.; Dunn, B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7, 1597-1614.
    33. Gamby, J.; Taberna, P.; Simon, P.; Fauvarque, J.; Chesneau, M., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources 2001, 101, 109-116.
    34. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H., Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes. Advanced Functional Materials 2001, 11, 387-392.
    35. Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C. P.; Wang, Z. L., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Letters 2014, 14, 731-736.
    36. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008, 7, 845.
    37. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? ACS Publications 2004, 4245-4270.
    38. Jayalakshmi, M.; Balasubramanian, K., Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci 2008, 3, 1196-1217.
    39. Burt, R.; Birkett, G.; Zhao, X., A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics 2014, 16, 6519-6538.
    40. Oh, Y.-J.; Park, G.-S.; Chung, C.-H., Planarization of copper layer for damascene interconnection by electrochemical polishing in alkali-based solution. Journal of the Electrochemical Society 2006, 153, G617-G621.
    41. Ambrose, J.; Barradas, R.; Shoesmith, D., Investigations of copper in aqueous alkaline solutions by cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 47, 47-64.
    42. Giri, S. D.; Sarkar, A., Electrochemical study of bulk and monolayer copper in alkaline solution. Journal of The Electrochemical Society 2016, 163, H252-H259.

    QR CODE