簡易檢索 / 詳目顯示

研究生: 郭令智
Kuo, Ling-Chi
論文名稱: 利用離子束濺鍍法鍍製二氧化矽與二氧化鈦之奈米多層薄膜應用於雷射干涉重力波偵測器反射鏡之研究
Study on nano-layers of titania and silica deposited by ion beam sputtering for mirror coatings of laser interferometer gravitational wave detector
指導教授: 趙煦
Chao, Shiuh
口試委員: 李正中
Lee, Cheng-Chung
施宙聰
Shy, Jow-Tsong
李瑞光
Lee, Ray-Kuang
陳至信
Chen, Jyh- Shin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 133
中文關鍵詞: 雷射干涉重力波偵測器奈米多層膜離子束濺鍍結晶溫度機械損耗雙能階系統
外文關鍵詞: laser interferometer gravitational wave detector, nano-layer, ion-beam sputter, crystallization temperature, mechanical loss, two level system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反射鏡的薄膜熱擾動是目前雷射重力波干涉儀最主要的雜訊之一,因此找尋低機械損耗的薄膜材料及薄膜結構,一直是下一世代觀測站研究的焦點。本論文提出使用奈米多層膜取代傳統高反射鏡中的四分之一波長薄膜。奈米多層膜同樣是使用兩種不同折射材料交替堆疊而成,但在奈米多層膜中每層的薄膜厚度僅為數奈米。奈米多層膜的等效光學常數和等效彈性常數具有可調整的特性,可通過改變奈米多層膜中兩材料厚度比例來調整。本篇研究發現兩種與厚度相關的現象並進行探討:首先是結晶的抑制,非晶薄膜材料的結晶溫度會隨著膜厚的減薄而增加,因此能承受更高的退火溫度更有效的降低機械損耗。其次為非晶薄膜材料低溫機械損耗的抑制,當薄膜減薄時低溫機械損耗也隨之下降。
    論文中使用離子束濺鍍法,交替鍍製二氧化鈦與二氧化矽薄膜來堆疊各種結構的奈米多層膜。在結晶抑制的實驗中,主要針對二氧化鈦的結晶溫度與厚度進行分析,在膜厚約127nm時結晶溫度約為250℃,但將膜厚下降到1.8nm後結晶溫度可提高至800℃。最後,本論文對二氧化鈦與二氧化矽厚度分別為1.8nm 和3.6nm的奈米多層膜進行600℃的退火,並對退火對機械損耗進行量測,從量測結果發現室溫和低溫的機械損耗均有明顯改善。
    論文中測量了兩種厚度比例相同,但單層膜厚不同的奈米多層膜。從量測結果中發現,奈米多層膜的低溫機械損耗量測值,均會低於理論的機械損耗值。且奈米多層膜中單層膜厚越薄,所量測到的機械損耗值也越低。認為是奈米多層膜結構能夠限制超出薄膜厚度原子團的轉換,使機械損耗降低。
    最後針對奈米多層膜堆疊而成的高反射鏡進行光學模擬,從模擬得知當入射波長在可見光和近紅外範圍時,反射頻譜會與傳統四分之一光學厚度堆疊而成的反射鏡相同。表示在可見光和近紅外範圍下,奈米多層膜內部不會產生額外的干涉效應。


    Thermal noise of the mirror coatings is one of the major noise sources for the laser interferometer gravitational waves detector at its most sensitive frequency about 100Hz. Searching for new thin film materials and layer structures for the mirror coatings with low mechanical loss and operate the instrument at cryogenic temperature are the main focuses for the coatings research of the next generation detector. In this study, a stack of alternately deposited films each with thickness in the nano-meter range is used to replace the quarter-wave layer in the conventional high reflector coatings. The effective optical constants and the effective elastic constants of the stack can be tuned by adjusting the thickness ratio of the nano-layers to optimize the optical and the mechanical properties of the coatings. Throughout the study, two thickness-related phenomena were discovered: the crystallization temperature of the amorphous thin film material was increased with decreased thickness, and the cryogenic mechanical loss of the amorphous thin film material was suppressed with decreased thickness. The former phenomenon enables the nano-layer stack to sustain the higher temperature of annealing to reduce the mechanical loss, and the later phenomenon provides a new layer structure for coatings of cryogenic operation.
    Ion beam sputtering was used to deposit nano-layer stacks that consisted of amorphous titania and silica thin films with various thickness combinations. The crystallization temperature of the titania layer increased from 250oC for 127 nm thickness to 800oC for 1.8 nm. Subsequent thermal annealing of the titania/silica (1.8 nm/3.6 nm) nano-layer at 600oC revealed that room temperature and cryogenic mechanical losses were reduced significantly.
    Cryogenic mechanical losses of the nano-layer stacks of titania/silica with the same thickness ratio were measured and found to be lower than that of the calculated titania/silica nano-layer using the mechanical loss of the thick films and furthermore, we experimentally verified that the titania/silica nano-layer with thinner silica thickness, but the same thickness ratio, has lower cryogenic mechanical loss than that of the nano-layer with thicker silica thickness. Suppression of the cryogenic mechanical loss of the silica by thinner thickness was evident. Suppression of the transitions of the two-level-system of the long-range group of atoms that exceeds the thickness of the silica film was proposed to account for the phenomena.
    Optical simulation of the complete mirror coatings that consisted of nano-layer stacks showed that the transmittance spectrum in the visible and near IR range is identical to that of the conventional quarter-waves stack that consists of quarter-wave layers with effective refractive index and extinction coefficient of the nano-layer stack, indicating that there is no extra interference effect introduced by the nano-layer.

    Abstract I 中文摘要 III Acknowledgement IV Contents VI List of figures IX List of Tables XIV Ch.1 Introduction 1 1.1 Gravitational wave detection 1 1.2 Noise sources 3 1.3 Nano-layer introduction 5 Ch.2 Theory 9 2.1 Mechanical loss of film 9 2.2 Energy ratio 10 2.3 Effective Young’s modulus 12 Effective parallel Young’s modulus 13 Effective vertical Young’s modulus 15 2.4 Effective shear modulus 16 Effective parallel shear modulus 17 Effective vertical shear modulus 19 2.5 Mechanical loss of nano-layer 20 2.6 Effective refractive index and extinction coefficient 21 Ch.3 Deposition of nano-layer 24 3.1 Thickness design 24 3.2 Silicon substrate 25 3.3 Ion beam sputter 27 3.3.1 Sputtering parameter 27 3.3.2 Thickness control 28 3.3.3 Composition analysis 30 Ch.4 Mechanical loss measuring system 31 4.1 Room temperature 31 4.2 Cryogenic 33 4.2.1 Introduction of the structure 33 Closed-loop system for helium recycling 33 Measurement conditions 35 4.2.2 Clamping system for cantilever 37 Effect of clamping torque 37 Effect of re-clamping 38 4.2.3 Temperature control system 42 Temperature stabilization 42 Effect on pressure 43 Effect on the resonant frequency of the cantilever 46 Effect of temperature recycle 47 Effect of laser light source wavelength 48 Ch.5 Measurement results and analysis 51 5.1 Thickness-dependent crystallization of titania 51 5.1.1 Annealing procedure 51 5.1.2 X-ray diffraction measurement results 53 Measuring principle 53 Measurement result 54 5.1.3 TEM measurement results 60 5.1.4 Crystal size analysis 64 5.2 Thickness-dependent on mechanical loss 68 5.2.1 Mechanical loss of silica 68 5.2.2 Mechanical loss of titania 71 5.2.3 Mechanical loss of nano-layer 72 19-layer with the thickness ratio of 65% 72 19-layer with the thickness ratio of 32% and 75-layer with the thickness ratio of 33% 74 5.2.4 Suppression effect on silica 78 Two-level system 78 Suppression effect at cryogenic temperature 79 Suppression effect at room temperature 82 5.2.5 Suppression effect on titania 85 5.3 Annealing effect of nano-layer 87 5.3.1 Annealing effect on silicon substrate 87 5.3.2 Room-temperature mechanical loss 89 Nano-layer with the thickness ratio of 65% 89 Nano-layer with the thickness ratio of 33% 94 5.3.3 Cryogenic mechanical loss 96 5.4 Optical properties of nano-layer 101 5.4.1 Effective layer 101 5.4.2 Reflectance spectrum 101 5.4.3 Absorptance 104 Ch.6 Conclusion and future work 106 6.1 Conclusion 106 6.2 Future work 107 Appendix A: Silicon substrate mechanical loss database for cryogenic temperature 109 Appendix B: Annealing effect on extinction coefficient 112 Appendix C: Numerical analysis of the strain energy in the cantilever system 115 Reference 126

    [1] A. Einstein, “Die grundlage der allgemeinen relativitätstheorie”, Annalen der Physik 49, 769-822 (1916).
    [2] R. A. Hulse, and J. H. Taylor, “Discovery of a pulsar in a binary system”, Astrophys. J. 195, L51-L53 (1975).
    [3] J. Weber, “Detection and generation of gravitational waves”, Physical Review 117, 306-313. (1960).
    [4] M. E. Gertsenshtein, and V. I. Pustovoit, “On the detection of low frequency gravitational waves”, 16, 433-435 (1962).
    [5] B. P. Abbott et al., “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
    [6] B. P. Abbott et al., “GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence”, Phys. Rev. Lett. 116, 241103 (2016).
    [7] B. P. Abbott et al., “GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2”, Phys. Rev. Lett. 118, 221101 (2017).
    [8] B. P. Abbott et al., “GW170814: A Three-detector observation of gravitational waves from a binary black hole coalescence”, Phys. Rev. Lett. 119, 141101 (2017).
    [9] B. P. Abbott et al., “GW170817: Observation of gravitational waves from a binary neutron star inspiral”, Phys. Rev. Lett. 119, 161101 (2017).
    [10] LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
    [11] F. Acernese et al. (Virgo Collaboration), “Advanced Virgo: a second-generation interferometric gravitational wave detector”, Class. Quantum Grav., 32, 024001 (2015).
    [12] H. Lück et al., “The upgrade of GEO 600”, J. Phys.: Conf. Ser., 228, 012012 (2010).
    [13] K. Somiya (for the KAGRA Collaboration), “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
    [14] LIGO Scientific Collaboration, “Instrument Science white paper of LIGO 2018”, https://dcc.ligo.org/LIGO-T1800133/public
    [15] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator”, Appl. Phys. B 31, 97-105 (1983).
    [16] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mhz linewidth”, Phys. Rev. Lett. 118, 263202 (2017).
    [17] R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+”, Phys. Rev. Lett. 85, 2462-2465 (2000).
    [18] T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s”, Phys. Rev. Lett. 109, 230801 (2012).
    [19] N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10-18 systematic uncertainty”, Phys, Rev. Lett. 116, 063001 (2016).
    [20] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9, 185-189 (2015).
    [21] H. B. Callen, and T. A. Welton, “Irreversibility and generalized noise”, Phys. Rev. 83, 34-40 (1951).
    [22] I. M. Pinto, “nm layered coatings: status and perspectives” Proc. ELiTES 2nd General Meeting, http://events.ego-gw.it/indico/getFile.py/access?contribId=25&sessionId=3&resId=0&materialId=slides&confId=7
    [23] H. W. Pan, S. J. Wang, L. C. Kuo, S. Chao, M. Principle, I. M. Pinto, and R. DeSalvo, “Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method,” Opt. Express 22, 29847-29854 (2014).
    [24] L. C. Kuo, H. W. Pan, C. L. Chang, and S. Chao, “Low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings,” Opt. Lett. 44, 247-250 (2019).
    [25] S. Chao, L. C. Kuo, H. W. Pan, C. L. Chang, and H. Y. Ho, “Inhibition of the Cryogenic Mechanical Loss in Thin Films by Thickness Reduction,” LIGO Report No. G1800300-v2 (2018).
    [26] S. Penn, J. Luo, R. Kasturi, and J. Podkaminer, “Recent measurements of coating and substrate mechanical loss for aLIGO”, LIGO Report No. G1000932 (2010).
    [27] D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger., “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures”, Phys. Rev. B 45, 2750 -2760 (1992)
    [28] D. G. Cahill and J. E. Van Cleve, “Torsional oscillator for internal friction data at 100 kHz”, Rev. Sci. Instrum. 60, 2706-2710 (1989).
    [29] J. W. Marx, and J. M. Sivertsen, “Temperature dependence of the elastic moduli and internal friction of silica and glass”, J. Appl. Phys. 24, 81-87 (1953).
    [30] I. W. Martin, R. Nawrodt, K. Craig, C. Schwarz, R. Bassiri, G. Harry, J. Hough, S. Penn, S. Reid, R. Robie, and S. Rowan, “Low temperature mechanical dissipation of an ion-beam sputtered silica film”, Class. Quantum Grav. 31, 035019 (2014).
    [31] O. L. Anderson, and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies”, J. Am. Ceram. Soc. 38, 125-131 (1955).
    [32] W. A. Phillips, “Two-level states in glasses”, Rep. Prog. Phys. 50, 1657-1708 (1987).
    [33] C. R. Billman, J. P. Trinastic, D. J. Davis, R. Hamdan, and H. P. Cheng, “Origin of the second peak in the mechanical loss function of amorphous silica”, Phys. Rev. B 95, 014109 (2017).
    [34] J. P. Trinastic, R. Hamdan, C. Billman, and H. P. Cheng, “Molecular dynamics modeling of mechanical loss in amorphous tantala and titania-doped tantala”, Phys. Rev. B 93, 014105 (2016).
    [35] R. Hamdan, J. P. Trinastic, and H. P. Cheng, “Molecular dynamics study of the mechanical loss in amorphous pure and doped silica”, J. Chem. Phys. 141, 054501 (2014).
    [36] A. S. Nowick, and B. S. Berry. in Anelastic Relaxation in Crystalline Solids. (New York: Academic Press, 1972), p.1-29
    [37] W. Y. Wang, “Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector”, master thesis, NTHU Hsinchu Taiwan (2013).
    [38] L. D. Landau, and E. M. Lifshitz, in Theory of Elasticity, 3rd ed., (Oxford, Pergamon Press, 1986), Ch.1
    [39] D. R. M. Crooks, “Mechanical loss and its significance in the test mass mirrors of gravitational wave detectors”, PhD thesis, University of Glasgow (2002).
    [40] B. S. Berry, and W. C. Pritchet, “Vibrating reed internal friction apparatus for films and foils”, IBM J. Res. Dev. 19, 334-343 (1975).
    [41] A. Heptonstall, G. Cagnoli, J. Hough, and S. Rowan, “Characterisation of mechanical loss in synthetic fused silica ribbons”, Phys. Lett. A 354, 353-359 (2006).
    [42] B. E. White, Jr., and R. O. Pohl, “Internal Friction of Subnanometer a-SiO2 Films”, Phys. Rev. Lett. 75, 4437-4439 (1995).
    [43] X. Liu, B. E. White, Jr., R. O. Pohl, E. Iwanizcko, K. M. Jones, A. H. Mahan, B. N. Nelson, R. S. Crandall, and S. Veprek, “Amorphous Solid Without Low Energy Excitations”, Phys. Rev. Lett. 78, 4418-4421 (1997).
    [44] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s modulus of silicon?”, J. Microelectromech. Syst. 19, 229-238 (2010).
    [45] V. B. Braginsky, and S. P. Vyatchanin, “Thermodynamical fluctuations in optical mirror coatings”, Phys. Lett. A, 312, 244-255 (2003).
    [46] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermo-refractive noise in gravitational wave antennae”, Phys. Lett. A 271, 303-307 (2000).
    [47] R. M. Jones, in Mechanics of Composite Materials, 2nd ed., (CRC Pres, 1998), Ch.3, P126-136.
    [48] R. M. Jones, in Mechanics of Composite Materials, 2nd ed., (CRC Pres, 1998), Ch.2, P.61.
    [49] S. D. Penn et al., “Mechanical loss in tantala/silica dielectric mirror Coatings”, Class. Quantum Grav. 20, 2917-2928 (2003).
    [50] P. G. Murray, I. W. Martin, K. Craig, J. Hough, R. Robie, S. Rowan, M. R. Abernathy, T. Pershing, and S. Penn, “Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems”, Phys. Rev. D 92, 062001 (2015).
    [51] M. Born, and E. Wolf, in Principle of Optics, 6th ed., (Pergamon stress, New York, 1980), ch.1.
    [52] H. A. Macleod, in Thin-Film Optical Filters, 4th ed., (CRC Press, 2010), ch.2
    [53] A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique”, J. Appl. Phys. 93, 2590-2594 (2003)
    [54] A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures”, Opt. Appl. 36, 39-50 (2006).
    [55] I. M. Pinto, R. DeSalvo, and S. Chao, “Nanometer-layered SiO2::TiO2 mixtures for high reflectance/low noise coatings status update”, LIGO Report No. G1300321-v1 (2013).
    [56] U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment”, Rev. Sci. Instrum. 67, 3281-3293 (1996).
    [57] F. J. Elmer, and M. Dreier, “Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium”, J. Appl. Phys. 81, 7709-7714 (1997).
    [58] W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors”, Phys. Rev. A 44, 7022-7036 (1991).
    [59] S. Rowan, R. L. Byer, M. M. Fejer, R. Route, G. Cagnoli, D. R. M. Crooks, J. Hough, P. H. Sneddon, and W. Winklere, “Test mass materials for a new generation of gravitational wave detectors”, Proc. of SPIE 4856, 292-297 (2003).
    [60] R. Nawrodt, A. Zimmer, T. Koettig, C. Schwarz, D. Heinert, M. Hudl, R. Neubert, M. Thürk, S. Nietzsche, W. Vodel, P. Seidel, and A. Tünnermann, “High mechanical Q-factor measurements on silicon bulk samples”, J. Phys. Conf. Ser. 122, 012008 (2008).
    [61] D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, “Measurements of the mechanical Q of single-crystal silicon at low temperatures”, J. Low Temp. Phys. 30, 621-629 (1978).
    [62] R. Hull, in Properties of Crystalline Silicon, (IEE, 1999), Ch.4
    [63] ET Science Team, “Einstein gravitational wave telescope conceptual design study”, European Gravitational Observatory Report No. ET-0106C-10, Cascina Italy (2011).
    [64] T. J. Quinn, C. C. Speake, R. S. Davis, and W. Tew, “Stress-dependent damping in Cu-Be torsion and flexure suspensions at stresses up to 1.1 GPa”, Physics Letters A. 197,197-208 (1995).
    [65] S. Chao, J. S. Ou, V. Huang, J. Wang, S. Wang, H. Pan, and C. W. Lee, “Progress of coating development at NTHU”, LIGO Report No. G1200849-v1 (2012).
    [66] D. T. Wei, “Ion beam interference coating for ultralow optical loss”, Appl. Opt. 28, 2813-2816 (1989).
    [67] W. J. Huang, “Preparation of the ion beam sputter coater for coating the low loss thin film in LIGO mirror application”, master thesis, NTHU, Taiwan, R.O.C. (2012).
    [68] S. Reid, G. Cagnoli , D. R. M. Crooks , J. Hough , P. Murray, S. Rowan, M. M. Fejer, R. Route, and S. Zappe, “Mechanical dissipation in silicon flexures”, Phys. Lett. A 351, 205-211 (2006).
    [69] R. G. Christian, “The theory of oscillating-vane vacuum gauges”, Vacuum 16, 175-178 (1966).
    [70] J. S. Oul, “Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers”, master thesis, NTHU, Taiwan, R.O.C. (2012).
    [71] H. W. Pan, H. C. Chen, L. C. Kuo, and S. Chao, “Preliminary results of modal analysis on the cantilever-clamp system for measuring the mechanical loss of thin films by means of cantilever ring-down method”, LIGO Report No. G1700299-v1 (2017).
    [72] R. Nawrodt , A. Zimmer, S. Nietzsche, M. Thürk, W. Vodel, P. Seidel, “A new apparatus for mechanical Q-factor measurements between 5 and 300 K”, Cryogenics 46, 718-723 (2006).
    [73] S. Y. Huang, “Stress and mechanical loss study for the double-side coated SiNx films on silicon cantilever”, master thesis, NTHU, Taiwan, R.O.C. (2015).
    [74] S. M. Sze, and K. K. Ng, in The Physics of Semiconductor, (wiley, New York, 1969), p.12-20
    [75] B. O. Cho, J. P. Chang, J. H. Min, S. H. Moon, Y. W. Kim, and I. Levin, “Material characteristics of electrically tunable zirconium oxide thin films”, J. Appl. Phys. 93, 745-749 (2003).
    [76] Y. F. Chen, C. Y. Lee, M. Y. Yeng, and H T. Chiu, “The effect of calcination temperature on the crystallinity of TiO2 nanopowders”, J. Cryst. Growth, 247, 363-370, (2003).
    [77] T. D. Liu, “Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD”, master thesis, NTHU, Taiwan, R.O.C. (2018)
    [78] B. Corain, G. Schmid, and N Toshim, in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, (Elsevier Science, 2008), ch.6
    [79] B. E. Warren, in X-ray Diffraction, (New York: Dover Publisher, 1990), ch.13
    [80] A. J. C. Wilson, in X-ray Optics, (Methuen & Co. Ltd., London, 1949), ch.4
    [81] A. Bendavid, P. J. Martin, and H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition”, Thin Solid Films 360, 241-249 (2000).
    [82] D. R. Blak, D. Windover, A. Henins, D. Gil, J. Filliben, and J. P. Cline, “Standard reference material 640d for X-ray metrology”, National Institute of Standards and Technology, 172-179 (2010).
    [83] R. Robie, J. Bradby, M. Fletcher, J. Hough, I. W. Martin, P. Murray, S. Rowan, and J. Steinlechner, “Brief update of cryogenic coating mechanical loss measurements at the University of Glasgow”, LIGO Report No. G1601854 (2016).
    [84] I. Martin et al., “Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2”, Classical Quant. Grav. 25, 055005 (2008).
    [85] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26 155012 (2009).
    [86] W. A. Phillips, “Tunneling state in amorphous solids”, J. of low temperature Physics 7, 351-360 (1972).
    [87] K. S. Gilroy, and W. A. Phillips, “An asymmetric double-well potential model for structural relaxation processes in amorphous materials”, philosophical magazine B 43, 735-746 (1981).
    [88] A. C. Wright, “Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies?”, J. Non-Cryst. Solids 179, 84-115 (1994).
    [89] Y. H. Juang, “Stress effect on mechanical loss of SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement”, master thesis, NTHU, Taiwan, R.O.C. (2014).
    [90] I. W. Martin, “Studies of materials for use in future interferometric gravitational wave detectors”, PhD thesis, University of Glasgow (2009).
    [91] K. Craig, J. Steinlechner, P. G. Murray, A. S. Bell, R. Birney, K. Haughian, J. Hough, I. MacLaren, S. Penn, S. Reid, R. Robie, S. Rowan, and I. W. Martin, “Mirror coating solution for the cryogenic Einstein Telescope”, Phys. Rev. Lett. 122, 231102 (2019).
    [92] H. W. Pan, L. C. Kuo, S. Y. Huang, M. Y. Wu, Y. H. Juang, C. W. Lee, H. C. Chen, T. T. Wen, and S. Chao, “Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector”, Phys. Rev. D 97, 022004 (2018).
    [93] A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments”, Proc. SPIE 7193, 71930D (2009).
    [94] N. C. Kang, “Photothermal common-path interferometry system setup and study of the optical absorption of the silicon nitride films deposited by PECVD method”, master thesis, NTHU, Taiwan, R.O.C. (2017)
    [95] P. H. Huang, master thesis, NTHU, Taiwan, R.O.C. (in preparation)

    QR CODE