研究生: |
黃家昀 Huang, Chia-Yun |
---|---|
論文名稱: |
口腔癌細胞衍生的外泌體 miR-421藉由血管內皮細胞 HS2ST1調控血管生成的機制探討 The Role of Oral Squamous Cell Carcinoma-Derived Exosomal miR-421 in Angiogenesis via Targeting HS2ST1 in Vascular Endothelial Cells |
指導教授: |
夏興國
Shiah, Shine-Gwo 汪宏達 Wang, Horng-Dar |
口試委員: |
黃智興
裝雙恩 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | OSCC 、外泌體 、miR-421 、HS2ST1 、血管新生 |
外文關鍵詞: | OSCC, exosome, miR-421, HS2ST1, angiogenesis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔鱗狀細胞癌 (OSCC) 一種局部侵襲性腫瘤,佔頭頸癌的 90%,是全球第 6 位最常見的惡性腫瘤,迄今為止,尚無有效的方法來減少 OSCC 患者的腫瘤惡性發展。 MicroRNAs (miRNAs) 是蛋白質編碼基因的有效轉錄後調節因子。癌症中 miRNA 的失調意謂著 miRNA 在腫瘤發生中可能扮演關鍵角色。近期有許多文獻報導證實,外泌體為miRNA的重要載體,在腫瘤微環境的建立中扮演重要角色。因此,我們假設源自 OSCC 的外泌體含有致癌 miRNA。使用 miRNA 微陣列結合 OSCC 患者的 miRNA 表達圖譜(GSE45238),我們發現與正常角質形成細胞衍生的外泌體相比,miR-421在 OSCC 細胞衍生的外泌體中是高度表達。在一系列實驗中我們證實miR-421 能夠誘導血管新生並增加血管內皮細胞中VEGFR2、ERK、Akt磷酸化的表現。此外,miR-421能夠藉由抑制硫酸乙酰肝素 2-O-磺基轉移酶 (HS2ST1)蛋白的表現來誘導血管新生反應,HS2ST1 是一種介導硫酸乙酰肝素蛋白聚醣2-O-硫酸化的酶。總之,這些數據表明 miR-421 在調節HS2ST1/VEGFR2/ERK 或 /Akt 在血管新生中有著重要角色。因此,抑制 miR-421 表達或阻斷這些外泌體的傳輸可能是 OSCC 的一種新的抗血管新生治療策略。
Oral squamous cell carcinoma (OSCC), a characteristic locally aggressive tumor, is the 6th most common malignancy worldwide OSCC accounting for about 90% of head and neck cancer. Thus far, no effective methods have been available to reduce the malignant progression in OSCC patients. MicroRNAs (miRNAs) are potent post‐transcriptional regulators of protein coding genes. Patterns of dysregulation of miRNAs in cancer suggest key functions of miRNAs in tumorigenesis. Recently, exosomes were established to be significant carriers of miRNAs, which play an important role in the establishment of the tumor microenvironment. Therefore, we hypothesized that exosomes derived from OSCC contain oncogenic miRNAs. Using miRNA microarray combined with OSCC patients’ miRNA expression profile (GSE45238), we identified miR-421 which was highly expressed in OSCC cells-derived exosomes compared with normal keratinocyte-derived exosomes. Series of experiments involving the introduction of exogenous miR-421 induced angiogenic cascade increasing VEGFR2 activity, ERK phosphorylation, Akt phosphorylation and tube formation in human umbilical vein endothelial cells (HUVEC). Furthermore, miR-421 triggered the angiogenic cascade by targeting heparan sulfate 2-O-sulphotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of heparan sulfate proteoglycans. Taken together, these data indicate that miR-421 plays an important role in mediating HS2ST1/VEGFR2/ERK or /Akt angiogenic cascade. In addition, suppressing the miR-421 expression or blocking the transmission of these exosomes might be a novel antiangiogenic therapeutic strategy for OSCC.
[1] L. P. Sun et al., “Cancer-associated fibroblast-derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma,” Oncol. Rep., vol. 42, no. 4, pp. 1319–1328, 2019, doi: 10.3892/or.2019.7255.
[2] T. Sasahira and T. Kirita, “Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma,” Int. J. Mol. Sci., vol. 19, no. 8, 2018, doi: 10.3390/ijms19082413.
[3] L. A. Torre, F. Bray, R. L. Siegel, J .Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” CA. Cancer J. Clin., vol. 65, no. 2, pp. 87–108, 2015, doi: 10.3322/caac.21262.
[4] I. BinLian, Y. T. Tseng, C. C. Su, and K. Y. Tsai, “Progression of precancerous lesions to oral cancer: Results based on the Taiwan National Health Insurance Database,” Oral Oncol., vol. 49, no. 5, pp. 427–430, 2013, doi: 10.1016/j.oraloncology.2012.12.004.
[5] C. C. Su, K. Y. Tsai, Y. Y. Hsu, Y. Y. Lin, and I. BinLian, “Chronic exposure to heavy metals and risk of oral cancer in Taiwanese males,” Oral Oncol., vol. 46, no. 8, pp. 586–590, 2010, doi: 10.1016/j.oraloncology.2010.05.001.
[6] K. Dhanuthai et al., “Oral cancer: A multicenter study,” Med. Oral Patol. Oral y Cir. Bucal, vol. 23, no. 1, pp. e23–e29, 2018, doi: 10.4317/medoral.21999.
[7] L. Feller, N. H. Wood, R. A. G.Khammissa, and J. Lemmer, “Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 1: human papillomavirus-mediated carcinogenesis.,” Head Face Med., vol. 6, p. 14, 2010.
[8] B. J. Perry et al., “Sites of origin of oral cavity cancer in nonsmokers vs smokers: possible evidence of dental trauma carcinogenesis and its importance compared with human papillomavirus.,” JAMA Otolaryngol. Head Neck Surg., vol. 141, no. 1, pp. 5–11, Jan.2015, doi: 10.1001/jamaoto.2014.2620.
[9] C. He, S.Zheng, Y. Luo, and B. Wang, “Exosome theranostics: Biology and translational medicine,” Theranostics, vol. 8, no. 1, pp. 237–255, 2018, doi: 10.7150/thno.21945.
[10] X. Zhang, X. Yuan, H. Shi, L. Wu, H. Qian, and W. Xu, “Exosomes in cancer: Small particle, big player,” J. Hematol. Oncol., vol. 8, no. 1, pp. 1–13, 2015, doi: 10.1186/s13045-015-0181-x.
[11] Y. Jia et al., “Exosome: Emerging biomarker in breast cancer,” Oncotarget, vol. 8, no. 25, pp. 41717–41733, 2017, doi: 10.18632/oncotarget.16684.
[12] P. Li, M. Kaslan, S. H. Lee, J. Yao, and Z. Gao, “Progress in exosome isolation techniques,” Theranostics, vol. 7, no. 3, pp. 789–804, 2017, doi: 10.7150/thno.18133.
[13] J. Zhang et al., “Exosome and exosomal microRNA: Trafficking, sorting, and function,” Genomics, Proteomics Bioinforma., vol. 13, no. 1, pp. 17–24, 2015, doi: 10.1016/j.gpb.2015.02.001.
[14] R. K. Nicholas Dias, Yung Peng, “Exosomes in cancer development, metastasis, and immunity,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2017, doi: 10.1016/j.bbcan.2019.04.004.Exosomes.
[15] A. Esquela-Kerscher and F. J.Slack, “Oncomirs - MicroRNAs with a role in cancer,” Nat. Rev. Cancer, vol. 6, no. 4, pp. 259–269, 2006, doi: 10.1038/nrc1840.
[16] C. P. Khoo et al., “miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration,” Sci. Rep., vol. 7, no. February, pp. 1–14, 2017, doi: 10.1038/srep44137.
[17] C. J. Stavast and S. J. Erkel and, “The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation,” Cells, vol. 8, no. 11, 2019, doi: 10.3390/cells8111465.
[18] H. Liu, C. Lei, Q. He, Z. Pan, D. Xiao, and Y. Tao, “Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer,” Mol. Cancer, vol. 17, no. 1, pp. 1–14, 2018, doi: 10.1186/s12943-018-0765-5.
[19] A. M.Mohr andJ. L.Mott, “Overview of microRNA biology,” Semin. Liver Dis., vol. 35, no. 1, pp. 3–11, 2015, doi: 10.1055/s-0034-1397344.
[20] M. V. Iorio and C. M.Croce, “microRNA involvement in human cancer,” Carcinogenesis, vol. 33, no. 6, pp. 1126–1133, 2012, doi: 10.1093/carcin/bgs140.
[21] T .Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer (Review),” Oncol. Lett., vol. 16, no. 1, pp. 687–702, 2018, doi: 10.3892/ol.2018.8733.
[22] danBree, Dara; levy, “Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2019, doi: 10.1007/s10456-017-9552-y.Anti-angiogenesis.
[23] N. Nishida, H. Yano, T. Nishida, T. Kamura, and M. Kojiro, “Angiogenesis in cancer,” Vasc. Health Risk Manag., vol. 2, no. 3, pp. 213–219, 2006, doi: 10.2147/vhrm.2006.2.3.213.
[24] M. Rajabi and S. A. Mousa, “The role of angiogenesis in cancer treatment,” Biomedicines, vol. 5, no. 2, 2017, doi: 10.3390/biomedicines5020034.
[25] F. C. O. B. Teixeira et al., “The Heparan Sulfate Sulfotransferases HS2ST1 and HS3ST2 Are Novel Regulators of Breast Cancer Stem-Cell Properties,” Front. Cell Dev. Biol., vol. 8, no. September, pp. 1–12, 2020, doi: 10.3389/fcell.2020.559554.
[26] M. Ravikumar, R . A. A.Smith, V. Nurcombe, and S. M.Cool, “Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function,” Front. Cell Dev. Biol., vol. 8, no. November, pp. 1–23, 2020, doi: 10.3389/fcell.2020.581213.
[27] V. DePasquale and L. M.Pavone, “Heparan sulfate proteoglycan signaling in tumor microenvironment,” Int. J. Mol. Sci., vol. 21, no. 18, pp. 1–29, 2020, doi: 10.3390/ijms21186588.
[28] A.Nagarajan, P. Malvi, and N.Wajapeyee, “Heparan sulfate and Heparan Sulfate Proteoglycans in cancer initiation and progression,” Front. Endocrinol. (Lausanne)., vol. 9, no. AUG, pp. 1–11, 2018, doi: 10.3389/fendo.2018.00483.
[29] A.Vijaya Kumar et al., “HS2ST1-dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior,” Cancer Sci., vol. 111, no. 8, pp. 2907–2922, 2020, doi: 10.1111/cas.14539.
[30] P. Chiodelli, A. Bugatti, C. Urbinati, and M. Rusnati, “Heparin/heparan sulfate proteoglycans glycomic interactome in angiogenesis: Biological implications and therapeutical use,” Molecules, vol. 20, no. 4, pp. 6342–6388, 2015, doi: 10.3390/molecules20046342.
[31] F. P.Batista et al., “Crataeva tapia bark lectin (CrataBL) is a chemoattractant for endothelial cells that targets heparan sulfate and promotes in vitro angiogenesis,” Biochimie, vol. 166, pp. 173–183, 2019, doi: 10.1016/j.biochi.2019.04.011.
[32] X. M. R.VanWijk and T. H.VanKuppevelt, “Heparan sulfate in angiogenesis: A target for therapy,” Angiogenesis, vol. 17, no. 3, pp. 443–462, 2014, doi: 10.1007/s10456-013-9401-6.
[33] S. H. Jung et al., “Heparan sulfation is essential for the prevention of cellular senescence,” Cell Death Differ., vol. 23, no. 3, pp. 417–429, 2016, doi: 10.1038/cdd.2015.107.
[34] H. Hassan, B. Greve, M. S. G.Pavao, L.Kiesel, S. A. Ibrahim, and M. Götte, “Syndecan-1 modulates β-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation,” FEBS J., vol. 280, no. 10, pp. 2216–2227, 2013, doi: 10.1111/febs.12111.
[35] G. Z.Huang, Q. Q.Wu, Z. N.Zheng, T. R.Shao, andX. Z.Lv, “Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma,” Front. Oncol., vol. 9, no. OCT, pp. 1–15, 2019, doi: 10.3389/fonc.2019.01054.
[36] S. Tan et al., “Exosomal miRNAs in tumor microenvironment,” J. Exp. Clin. Cancer Res., vol. 39, no. 1, pp. 1–15, 2020, doi: 10.1186/s13046-020-01570-6.
[37] Y. L.Hsu et al., “Hypoxic lung cancer-secreted exosomal MIR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1,” Oncogene, vol. 36, no. 34, pp. 4929–4942, 2017, doi: 10.1038/onc.2017.105.
[38] Q. Wu, L.Zhou, D.Lv, X.Zhu, andH.Tang, “Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression,” J. Hematol. Oncol., vol. 12, no. 1, pp. 1–11, 2019, doi: 10.1186/s13045-019-0739-0.
[39] R. H.Farnsworth, M.Lackmann, M. G.Achen, andS. A.Stacker, “Vascular remodeling in cancer,” Oncogene, vol. 33, no. 27, pp. 3496–3505, 2014, doi: 10.1038/onc.2013.304.
[40] C. Ferreras et al., “Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor,” J. Biol. Chem., vol. 287, no. 43, pp. 36132–36146, 2012, doi: 10.1074/jbc.M112.384875.
[41] B. B.Olwin andA.Rapraeger, “Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate,” J. Cell Biol., vol. 118, no. 3, pp. 631–639, 1992, doi: 10.1083/jcb.118.3.631.
[42] D. M.Ornitz, A.Yayon, J. G.Flanagan, C. M.Svahn, E.Levi, andP.Leder, “Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells.,” Mol. Cell. Biol., vol. 12, no. 1, pp. 240–247, 1992, doi: 10.1128/mcb.12.1.240.
[43] M. Shibuya, “Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies,” Genes and Cancer, vol. 2, no. 12, pp. 1097–1105, 2011, doi: 10.1177/1947601911423031.
[44] W. He et al., “Long noncoding RNA BLACAT2 promotes bladder cancer–associated lymphangiogenesis and lymphatic metastasis,” J. Clin. Invest., vol. 128, no. 2, pp. 861–875, 2018, doi: 10.1172/JCI96218.
[45] C. Chen et al., “Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer,” J. Clin. Invest., vol. 130, no. 1, pp. 404–421, 2020, doi: 10.1172/JCI130892.