研究生: |
葉佳皓 Yeh, Chia-hao |
---|---|
論文名稱: |
數位信號處理器為主之具三相切換式整流器前級變頻器系統 DSP-BASED INVERTER SYSTEMS WITH THREE-PHASE SWITCH-MODE RECTIFIER FRONT-END |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 210 |
中文關鍵詞: | 單相變頻器 、三相變頻器 、模組組接 、諧振轉換器 、隔離式直流鏈 、數位控制 、數位信號處理器 、波形控制 、變壓器激磁不平衡 、切換式整流器 、功因校正 |
外文關鍵詞: | Single-phase inverter, three-phase inverter, modular connection, resonant converter, isolated DC-link, digital control, DSP, waveform control, transformer flux imbalance, switch-mode rectifier, power factor correction |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製以數位信號處理器為主具切換式整流器前級電氣隔離之單相與三相變頻器系統,藉由適當控制獲得良好之變頻器輸出性能及優良入電電力品質。在變頻器系統之開發中,提出下列組態之設計、建構與控制:(i)單相低頻與高頻隔離式變頻器;(ii)三相單模組低頻與高頻隔離式變頻器;(iii)三相低頻隔離式Y與Δ/V模組組接變頻器。所建構變頻器系統之主要特性有:(i)採用強健電流及電壓波形控制,使在變動與非線性負載下仍具有良好及穩健之變頻器輸出效能;(ii)應用直流/直流串聯共振式轉換器提供高頻隔離;(iii)Δ-接模組變頻器中任一單相變頻器模組故障時,可自動轉成V-接模組於降載下繼續供電。
眾所皆知地,切換式整流器可從事交流至直流電能轉換,同時具良好之交流入電電力品質,而在較大額定時通常採三相切換式整流器。本論文建構一個三相單開關及一個維也納切換式整流器,以為所建變頻器系統之前級,並從事其比較性能評定。三相單開關切換式整流器工作於不連續導通模式而不需電流控制,具有最簡易之電路組態及控制架構,但所得之電力品質特性較差。而維也納切換式整流器使用三個功率開關,並操作於連續導通模式,具有比三相單開關切換式整流器優良之電力調控能力及電力品質。
關鍵詞:單相變頻器、三相變頻器、模組組接、諧振轉換器、隔離式直流鏈、數位控制、數位信號處理器、波形控制、變壓器激磁不平衡、切換式整流器、功因校正。
This thesis develops some DSP-based isolated single- and three-phase inverters with switch-mode rectifier (SMR) front-end. The adequate control is conducted to yield good inverter output performance and satisfactory line drawn power quality. In the development of inverter systems, the designs, implementations and controls for the following plants are performed: (i) single-phase low-frequency (LF) and high-frequency (HF) isolated inverters; (ii) three-phase single-module LF and HF isolated inverters; (iii) three-phase LF isolated Y and Δ/V modular connected inverters. Some major features of these developed inverters lie in: (i) the robust current and voltage waveform controls are proposed to yield good and robust inverter output performance under changing and nonlinear loads; (ii) the HF isolation is achieved by an isolated intermediate DC/DC series resonant converter; (iii) the Δ-connected inverter can become V-connected one automatically as one constituted module is faulted.
As generally recognized, SMR is an indispensable power electronic equipment for AC to DC conversion with good power quality, and the three-phase one is a natural choice for higher power rating. This thesis develops a three-phase single-switch (3P1SW) and a three-phase Vienna SMR front-ends for the established inverters, and their comparative performance evaluation is made. The 3P1SW SMR operating in discontinuous conduction mode (DCM) is simpler in circuit and control scheme, but it suffers from having limited power quality characteristics. As to the Vienna SMR, it employs three power switches and operates under continuous conduction mode (CCM). Hence it possesses much better power conditioning control capability and power quality than those of 3P1SW SMR.
Key words: Single-phase inverter, three-phase inverter, modular connection, resonant converter, isolated DC-link, digital control, DSP, waveform control, transformer flux imbalance, switch-mode rectifier, power factor correction.
A. Fundamental of Inverters
[1] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed. New Jersey: Prentice-Hall, 2002.
[2] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Massachusetts: SCI-TECH, 2001.
[4] P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” in Proc. PCIM, 2003, pp. 1-5.
[5] Y. Haung, J. Wang, F. Z. Peng and D. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. PESC, 2006, pp. 1-6.
[6] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
B. PWM Switching Methods
[7] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[8] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
[9] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[10] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
[11] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
[12] A. M. Hava, R. J. Kerkman and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE. Trans. Ind. Applicat., vol. 34, no. 5, pp. 1059-1071, 1998.
[13] K. Meghriche, O. Mansouri and A. Cherifi, “Microcontroller-based single phase inverter using a new switching strategy,” in Proc. IPEMC, 2006, pp. 1-6.
[14] K. M. Cho, W. S. Oh, Y. T. Kim and H. J. Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 330-337, 2007.
[15] W. Shireen and H. R. Nene, “DSP-based control for reliable fuel cell power systems with input ripple current compensation,” in Proc. PES General Meeting Conversation and Delivery of Electrical Energy, 2008, pp. 1-4.
[16] J. Shukla and B. G. Fernandes, “Three-phase soft-switched PWM inverter for motor drive application,” IET Proc. Elect. Power Appl., 2007, vol. 1, no. 1, pp. 93-104.
[17] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[18] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. PESC, 2001, vol. 2, pp. 17-21.
[19] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” in Proc. PESC, 2000, pp. 1414-1418.
[20] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” in Proc. PEDS, 1995, pp. 379-384.
[21] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999.
[22] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
[23] J. Hong, J. Kim and K. Nam, “A current distortion compensation scheme for four-switch inverters,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1032-1040, 2009.
[24] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appt., 2001, vol. 148, no. 6, pp. 503-512.
[25] Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484.
[26] F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
C. Dead Time Effects and Compensation Control
[27] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[28] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” in Proc. PSEC, 2001, pp. 244-249.
[29] A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
[30] N. Urasaki, T. Senjyu, K. Uezato and T. Funabashi, “Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 271-280, 2007.
D. Effects of DC-link Ripple, Output Filter and Transformer Imbalance
[31] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4,
pp. 65-70.
[32] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[33] H. H. Lee, P. Q. Dzung, L. M. Phuong, L. D. Khoa and H. T. Thanh, “New space vector control approach for four switch three phase inverter under DC-link voltage ripple,” in Proc. ICSET, 2008, pp. 1059-1064.
[34] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576.
[35] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
[36] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IPEMC, 2000, vol. 3, pp. 1122-1126.
[37] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. APEC, 2004, vol. 3, pp. 1709-1713.
[38] H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave inverters using DC autonulling control principle,” in Proc. EPE-PEMC, 2006, pp. 218-221.
E. Switch-Mode Rectifiers
[39] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[40] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behaviour,” IET Proc. Elect. Power Appl., 2007, vol. 1, no .3, pp. 316-328.
[41] M. Castilla, L. G. D. Vicuna, M. Guerrero, J. Matas and J. Miret, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., Accepted, 2009.
[42] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[43] H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[44] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[45] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998.
[46] D. Tokushima, H. Ishikawa, D. Wang and H. Naitoh, “Soft switched three-phase single switch boost-type rectifier,” in Proc. PCC, 2002, vol. 2, pp. 492-497.
[47] N. Takeuchi, K. Matsui, I. Yamamoto, M. Hasegawa, F. Ueda and H. Mori, “A novel PFC circuit for three-phase utilizing a single switching device,” in Proc. INTELEC, 2008, pp. 1-5.
[48] J. I. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 715-722, 2008.
[49] A. A. Badin and I. Barbi, “Unity power factor isolated three-phase rectifier with split DC-bus based on the scott transformer,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1278-1287, 2008.
[50] B. Wang, G. Venkataramanan and A. Bendre, “Unity power factor control for three-phase three-level rectifiers without current sensors,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1341-1348, 2007.
[51] H. Kanaan, K. Al-Haddad, R. Chaffai, L. Duguay and F. Fnaiech, “A new low-frequency state model of a three-phase three-level fixed frequency PWM rectifier,” in Proc. INTELEC, 2001, pp. 384-391.
[52] J. W. Kolar and H. Ertl, “Status of the techniques of three-phase rectifier systems with low effects on the mains,” in Proc. INTELEC, 1999.
[53] J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. APEC, 1996, vol. 2, pp. 514-523.
[54] U. Drofenik and J. W. Kolar, “Comparison of not synchronized sawtooth carrier and synchronized triangular carrier phase current control for the VIENNA rectifier I,” in Proc. IEEE ISIE, 1999, vol. 1, pp. 13-19.
[55] C. M. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 952-957, 2003.
[56] J. Minibock and J. W. Kolar, “Novel concept for mains voltage proportional input current shaping of a VIENNA rectifier eliminating controller multipliers,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 162-170, 2005.
[57] B. Kedjar and K. Al-Haddad, “LQR with integral action for phase current control of constant switching frequency Vienna rectifier,” in Proc. Trans. Ind. Electron., 2006, vol. 2, pp. 1461-1466.
[58] N. B. Hadj-Youssef, K. Al-Haddad, H.Y. Kanaan and F. Fnaiech, “Small-signal perturbation technique used for DSP-based identification of a three-phase three-level boost-type Vienna rectifier,” IET Proc. Elect. Power Applicat., 2007, vol. 1, no. 2, pp. 199-208.
[59] F. A. B. Batista and I. Barbi, “Space vector modulation applied to three-phase three-switch two-level unidirectional PWM rectifier,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2245-2252, 2007.
[60] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kW three-phase/switch/level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008.
[61] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Large-signal modeling and steady-state analysis of a 1.5-kW three-phase/switch/level (Vienna) rectifier with experimental validation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1213-1224, 2008.
[62] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[63] Rectifier Module VUM 25-05 for Three Phase Power Factor Correction Data Manual, IXYS Co., U.S.A., 2000.
[64] A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 994-1001, 2003.
[65] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. PESC, 1994, vol. 2, pp. 1158-1163.
[66] J. Y. Chai, “Development and control of a switched-reluctance motor drive with power factor correction front-end,” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2008.
[67] T. Jin, L. Li and K. M.Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 377-390, 2007.
[68] R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with fault tolerant capability,” in Proc. PESC, 2000, vol. 1, pp. 359-364.
[69] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
F. Modular Connected Three-Phase Inverters
[70] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” in Proc. EEIC, 1995, pp. 619-623.
[71] N. P. Schibli, T. Nguyen and A. C. Rufer, “A three-phase multilevel converter for high-power induction motors,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 978-986, 1998.
[72] Z. Qianzhi, Z. Kai and W. Jugui, “A novel single-three phase inverter adopting CTA scheme,” in Proc. PEMC, 2000, vol. 2, pp. 980-984.
[73] D. Casadei, G. Grandi, A. Lega and C. Rossi, “Multilevel operation and input power balancing for a dual two-level inverter with insulated DC sources,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1815-1824, 2008.
G. High Frequency Isolated DC-Link
[74] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[75] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[76] Application Note AN-4151, “Half-bridge LLC resonant converter design using FSFR-series Fairchild Power Switch (FPSTM), ” http://www.fairchildsemi.com.
[77] O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched Isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
[78] S. Inoue and H. Akagi, “A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007.
[79] J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions, ” in Proc. APEC, 2006, pp. 523-527.
[80] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology, ” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
[81] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
[82] M. H. Kheraluwala, D. W. Novotny and D. M. Divan, “Design considerations for high power high frequency transformers,” in Proc. PESC, 1990, pp. 734-742.
[83] W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp. 651-659, 1998.
[84] R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE
Trans. Power Electron., vol. 11, no. 1, pp. 33-42, 1996.
H. Multilevel Inverters
[85] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[86] J. Rodriguez, J. S. Lai and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002.
[87] G. S. Perantzakis, F. H. Xepapas and S. N. Manias, “A novel four-level voltage source inverter-influence of switching strategies on the distribution of power losses,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 149-159, 2007.
[88] K. Fujii, U. Schwarzer, W. Rik and D. Doncker, “Comparison of hard-switched multi-level inverter topologies for STATCOM by loss-implemented simulation and cost estimation,” in Proc. PESC, 2005, pp. 340-346.
[89] S. G. Jung, Y. G. Bae, S. W. Choi and H. S. Kim, “A low cost utility interactive inverter for residential fuel cell generation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2293-2298, 2007.
I. Digital Control
[90] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
[91] “Single-chip dsp-based high performance motor controller ADMC 401,” Analog Devices Inc., 2000.
[92] ‘‘Implementing PI controllers with the ADMC401,’’ Application Note AN401-13, Analog Devices Inc., 2000.
[93] “Digital signal controller TMS320F2812 data sheet,” http://www.project.ex.ac.uk/
uav/tms320f2812.pdf
J. Standards
[94] P. Kulkarni, “Assessing power quality impacts and solutions for the California food processing industry,” EPRI, California, Tech, Rep, 100-98-001, EPRI Project #37, 2005.
[95] F. J. Hibbard, M. Z. Lowenstein, Available : http://www.transcoil.com/meetieee.pdf
[96] R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., McGraw-Hill, 2003.
[97] A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001.
K. Others
[98] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
[99] AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005.
[100] Advance Powder Core for High Current PFC/Out Put Choke Application Data Manual, Amosense Co., Korea, 2005.
[101] J. Y. Chai, R. J. Chen and C. M. Liaw, “On a SRM with three-phase PFC front-end and its control,” R.O.C. Symposium on Electrical Power Engineering, pp. D06.3-1-D06.3-5, 2007.
[102] Y. L. Yang, “Development and digital control of inverter systems with galvanic isolation and front-end SMR,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, Hsinchu, ROC, 2008.