研究生: |
高瑋澤 Kao, Wei-Tsa |
---|---|
論文名稱: |
以GPU為運算核心的二階段哼唱選歌系統 A Two-Stage Query by Singing/Humming System on GPU |
指導教授: |
張智星
張俊盛 |
口試委員: |
張智星
張俊盛 呂仁園 王新民 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 音樂檢索 、哼唱選歌 、線性伸縮 、動態時間校正 、GPU |
外文關鍵詞: | Music Retrieval, Query by Singing and Humming, Linear Scaling, Dynamic Time Warping, GPU |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了使用GPU架構實作的二階段哼唱選歌系統。哼唱選歌 (Query by Singing and Humming, QBSH )是種利用人聲進行歌曲搜尋的方法,系統會採用使用者哼唱的片段並從資料庫中找出前十名最相似的歌曲。
為了增加比對速度,我們先使用了線性伸縮並從擁有八千四百三十一首流行歌的資料庫中找出較為可能的候選歌曲,接著會對這些候選歌進行動態時間校正比對以求得較好的效能。經過了最佳化微調以及合併方法的改進後,該系統能夠比純粹在GPU上使用動態時間校正快上7倍,且辨識率能達到77.65%。
關鍵字:音樂檢索、哼唱選歌、線性伸縮、動態時間校正、GPU
This research proposes the use of GPU (graphic processing unit) to implementing a two-stage comparison method for a QBSH (query by singing/humming) system. The system can take a user’s singing or humming and retrieve the top-10 most likely candidates from a database of 8431 songs.
In order to speed up the comparison, we apply linear scaling in the first stage to select candidate songs from the database. These candidate songs are then re-ranked by dynamic time warping to achieve better recognition accuracy in the second stage. With the optimum setting and improvement of combination method, we can achieve a speedup factor of 7 (compared to dynamic time warping on GPU) and an accuracy of 77.65%.
Keyword: Music Retrieval, Query by Singing and Humming, Linear Scaling, Dynamic Time Warping, GPU
[1] J.-S. R. Jang, J.-C. Chen and M.-Y. Kao.,“MIRACLE: A Music Information Retrieval System with Clustered Computing Engines,” ISMIR 2001.
[2] C.-C. Wang, C.-H. Chen, C.-Y. Kuo, L.-T. Chiu, and J.-S. R. Jang, “Accelerating Query by Singing/Humming on GPU: Optimization for Web Deployment,” ICASSP 2012
[3] G. Poli, A. L. M. Levada, J. F. Mari, J. H. Satio, “Voice Command Recognition with Dynamic Time Warping (DTW) using Graphics Processing Units (GPU) with Compute Unified Device Architecture (CUDA),” in Proceedings of the 19th International Symposium on Computer Architecture and High Performance Computing , SBAC-PAD 2007, Brazil, pp. 19–25, 2007.
[4] Jun Li, Shuangping Chen, Yanhui Li, “The Fast Evaluation of Hidden Markov Models on GPU,” in IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, vol. 4:426-430, Nov., 2009.
[5] P. Ferraro, P. Hanna, L. Imbert, and T. Izart, “Accelerating Query-by-Humming on GPU” in Proceedings of the 10th International Conference on Music Information Retrieval, ISMIR 2009, pp. 279–284, 200.
[6] Chin-Yang Kuo, “Accelerating Query By Singing/Humming on GPU”, National Tsing Hua Univ. 2013.
[7] Tzu-Chiao Lin, “Research and Implementation of Query by Singing/Humming for Embedded Karaoke Systems”, National Tsing Hua Univ. 2009
[8] Yi-Fan Fang, “Improvement and Implementation of Query by Singing/Humming Systems,”National Tsing Hua Univ. 2010
[9] Tin Kam Ho, J. Hull, Sargur N. Srihari, “Decision Combination in Multiple Classifier Systems,” in IEEE Transactions on Patter Analysis and Machine Intelligence (PAMI), Jam., 1994
[10] Ming-Xian Zou, “Query By Singing/Humming Using Combination of Classifiers”, National Tsing Univ. 2008.
[11] CUDA –Wikipedia, http://en.wikipedia.org/wiki/CUDA
[12] NVIDIA, “CUDA C Best Practices Guide”, http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
[13] NVIDIA, “NVIDIA CUDA C Programming Guide Version 4.2.”, http://docs.nvidia.com/cuda/cuda-c-programming-guide/
[14] CVG @ ETHZ - GP – GPU: General Purpose Programming on the Graphics Processing Unit, http://www.cvg.ethz.ch/teaching/2011spring/gpgpu/2012
[15] 林俊淵, 周嘉奕, 林郁翔, 李昇達, 陳昱蓉, 黃宣穎,李天齡, “CUDA輕鬆上手。新世代GPU應用技術”, 松崗資訊股份有限公司, 2011
[16] NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf, 2012
[17] Jang, J.-S Roger, Ming-Yang Kao, “A Query-by-Singing System based on Dynamic Programming,” International Workshop on Intelligent Systems Resolutions (the 8th Bellman Continuum), PP. 85-89, Hsinchu, Taiwan, Dec 2000.
[18] Borda Count – http://en.wikipedia.org/wiki/Borda_count
[19] Downhill Simplex search, “Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM Journal of Optimization, Vol. 9 Number 1, pp. 112-147, 1998”