研究生: |
謝岱恩 Hsieh, Tai-En |
---|---|
論文名稱: |
複合式產氧系統之開發及其於抑制缺氧細胞死亡之應用 Development of A Composite Oxygen-generating System for Preventing Hypoxia-induced Cell Death |
指導教授: |
黃玠誠
Huang, Chieh-Cheng |
口試委員: |
賴伯亮
Lai, Po-Liang 陳宏吉 Chen, Hong-Ji 薛詒仁 Xue, Yi-Ren 蕭慧怡 Hsiao, Hui-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 37 |
中文關鍵詞: | 缺氧 、缺氧誘導因子 、產氧材料 、PLGA微粒 |
外文關鍵詞: | hypoxia, hypoxia-inducible factor, oxygen-generating materials, PLGA microparticles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧氣在細胞調節、細胞增殖及能量產生上都扮演著重要的角色,若缺乏氧氣使細胞處於缺氧狀態,就容易因細胞代謝遭受破壞、ATP耗盡等現象,刺激細胞在短時間內死亡,導致組織壞死,產氧材料在臨床上是被廣泛需要的,像是骨折因常伴隨著血管結構的破壞,使得局部組織缺氧,進而導致骨折癒合不良或不癒合的情形。氧氣在骨折癒合中扮演重要的角色.其涉及了成骨細胞的分化、骨細胞增殖及骨礦化等等。為了改善細胞缺氧情形,並將其運用致臨床上,本論文開發一產氧載體,以聚乳酸-乙醇酸(poly latic-co-glycotic acid, PLGA)包覆過氧化鈣(CaO2)及二氧化錳(MnO2)。當PLGA降解時,水會滲透進入載體中和CaO2反應產生過氧化氫(H2O2),並進一步被MnO2催化產生氧氣。實驗結果顯示,我們能夠以微流道系統製備出PLGA產氧微粒載體。將載體的各項參數最佳化後,該產氧微粒可使低氧環境下磷酸緩衝溶液中的溶氧量顯著上升,且最多可持續四天。在細胞實驗方面,我們也證實此PLGA產氧微粒載體不具有明顯細胞毒性。缺氧誘導因子的免疫螢光染色結果顯示,本論文開發之PLGA產氧微粒載體可提供足夠氧氣,使低氧(1% O2)培養環境中的細胞不致有明顯的缺氧情形發生。未來我們亦擬將此氧氣載體做更廣泛的應用,以了解本論文開發之氧氣載體在臨床上的潛能。
As a crucial molecule to life, oxygen is required in several cellular processes, such as aerobic respiration, enzyme activation, cell differentiation, collagen synthesis, that are involved in fracture healing. Therefore, a major hurdle in promoting bone regeneration is to provide sufficient oxygen to support the survival and function of the newly formed tissue. In this work, a composite oxygen-generating system consisting calcium peroxide (CaO2)/manganese dioxide (MnO2)-encapsulated poly lactic-co-glycolic acid (PLGA) microparticles (MPs) was developed for improving local oxygenation and preventing hypoxia-induced cell death. Once exposed to water, solid CaO2 particles embedded in the PLGA MPs can generate hydrogen peroxide (H2O2), which can be further converted into oxygen under the catalysis of MnO2. According to our results, the developed oxygen-generating MPs could produce oxygen continuously for four days without dramatic change in pH or accumulation of H2O2. The results of in vitro studies demonstrated that the oxygen-producing MPs could effectively relieve cellular hypoxia, suggesting their great potential for enhancing local oxygenation of the hypoxic tissues.
1. Semenza, G.L., Life with oxygen. Science, 2007. 318(5847): p. 62-64.
2. Lunt, S.Y. and M.G. Vander Heiden, Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation, in Annual Review of Cell and Developmental Biology, Vol 27, R. Schekman, L. Goldstein, and R. Lehmann, Editors. 2011. p. 441-464.
3. Park, S. and K.M. Park, Hyperbaric oxygen-generating hydrogels. Biomaterials, 2018. 182: p. 234-244.
4. Lemasters, J.J., et al., The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica Et Biophysica Acta-Bioenergetics, 1998. 1366(1-2): p. 177-196.
5. Kaelin, W.G. and P.J. Ratcliffe, Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 2008. 30(4): p. 393-402.
6. Farris, A.L., A.N. Rindone, and W.L. Grayson, Oxygen delivering biomaterials for tissue engineering. Journal of Materials Chemistry B, 2016. 4(20): p. 3422-3432.
7. Weaver, L.K., K.J. Valentine, and R.O. Hopkins, Carbon monoxide poisoning - Risk factors for cognitive sequelae and the role of hyperbaric oxygen. American Journal of Respiratory and Critical Care Medicine, 2007. 176(5): p. 491-497.
8. Krafft, M.P., Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Advanced Drug Delivery Reviews, 2001. 47(2-3): p. 209-228.
9. Camci-Unal, G., et al., Oxygen-releasing biomaterials for tissue engineering. Polymer International, 2013. 62(6): p. 843-848.
10. Oh, S.H., et al., Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009. 30(5): p. 757-762.
11. Pedraza, E., et al., Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(11): p. 4245-4250.
12. Wang, J.P., et al., Oxygen-Generating Nanofiber Cell Scaffolds with Antimicrobial Properties. Acs Applied Materials & Interfaces, 2011. 3(1): p. 67-73.
13. Jain, R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000. 21(23): p. 2475-2490.
14. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p. 1377-1397.
15. Kashi, T.S.J., et al., Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. International Journal of Nanomedicine, 2012. 7: p. 221-234.
16. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28(1): p. 5-24.
17. Siegel, S.J., et al., Effect of drug type on the degradation rate of PLGA matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2006. 64(3): p. 287-293.
18. Wischke, C. and S.P. Schwendeman, Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008. 364(2): p. 298-327.
19. Zhang, H.F., et al., Preservation of Blood Vessels with an Oxygen Generating Composite. Advanced Healthcare Materials, 2018. 7(21).
20. Lu, C.Y., et al., The role of oxygen during fracture healing. Bone, 2013. 52(1): p. 220-229.
21. Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. Journal of Bone and Mineral Research, 2007. 22(3): p. 465-475.
22. Hu, K. and B.R. Olsen, Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. Journal of Clinical Investigation, 2016. 126(2): p. 509-526.
23. Gomez-Barrena, E., et al., Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone, 2015. 70: p. 93-101.
24. Loi, F., et al., Inflammation, fracture and bone repair. Bone, 2016. 86: p. 119-130.
25. Claes, L., S. Recknagel, and A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology, 2012. 8: p. 133.
26. Marsell, R. and T.A. Einhorn, The biology of fracture healing. Injury-International Journal of the Care of the Injured, 2011. 42(6): p. 551-555.
27. Kanczler, J.M. and R.O.C. Oreffo, Osteogenesis and angiogenesis: The potential for engineering bone. European Cells & Materials, 2008. 15: p. 100-114.
28. Ray, P.D., B.W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 2012. 24(5): p. 981-990.
29. Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 2010. 48(6): p. 749-762.
30. Wei, H., et al., Apoptosis of Mesenchymal Stem Cells Induced by Hydrogen Peroxide Concerns Both Endoplasmic Reticulum Stress and Mitochondrial Death Pathway Through Regulation of Calspases, p38 and JNK. Journal of Cellular Biochemistry, 2010. 111(4): p. 967-978.
31. Min, S.K., et al., Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. Journal of Oral Pathology & Medicine, 2008. 37(8): p. 490-498.
32. Prasad, P., et al., Multifunctional Albumin-MnO2 Nanoparticles Modulate Solid Tumor Microenvironment by Attenuating Hypoxia, Acidosis, Vascular Endothelial Growth Factor and Enhance Radiation Response. Acs Nano, 2014. 8(4): p. 3202-3212.