簡易檢索 / 詳目顯示

研究生: 方麗娜
Laina Farsiah
論文名稱: 印尼文情緒偵測於不均衡微網誌資料之研究
Emotion Detection for Unbalanced Indonesian Tweets
指導教授: 陳宜欣
Chen,Yi Shin
口試委員: 陳朝欽
Chen, Chaur-Chin
韓永楷
Hon, Wing-Kai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 38
中文關鍵詞: 情緒偵測不均衝資料維特印尼文
外文關鍵詞: Emotion Detection, Unbalanced Data, Twitter, Indonesian Language
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印尼文情緒偵測於不均衡微網誌資料之研究

    近年來,推特資料勘探已成爲研究熱點。而在微網誌上的情緒分析,是眾多研究中的其中一種。最近,相關學者提出了一種基於圖學的情緒模式擷取技術,該技術在多種語言的應用中皆取得良好效果。本研究旨在提升印尼文推特情緒分析的精確度,分析的情緒包括以下八類:開心(senang)、憂傷(sedih)、害怕(takut)、驚訝(terkejut)、噁心(jijik)、希望(antisipasi)、信任(percaya)、生氣(marah)。之前的研究中,印尼文的情緒分析精確度不甚理想,主要原因爲印尼文推特中情緒分佈不均衡。因此本研究提出一種調整情緒模式權重的方法以解決情緒分佈不均衡的問題。實驗結果證明,該方法可(顯著)提高印尼文推特中情緒分析的精確度。


    Emotion Detection for Unbalanced Indonesian Tweets
    ABSTRACT
    Research concerning Twitter mining becomes an interesting research topic in recent years. Emotion
    detection is one of research area which uses microblog, such as Twitter, to discover emotions from
    textual data. Recently, a novel technique based on graph-based was proposed to extract patterns that
    bear emotion. The system has been achieved a good performance in different languages. By adopting
    the system, we are motivated to enhance the accuracy of emotion detection for Indonesian language
    which consists of eight emotions, i.e. joy (senang), sad (sedih), fear (takut), surprise (terkejut),
    disgust (jijik), anticipation (antisipasi), trust (percaya), dan anger (marah). The data distribution
    among the emotions is really unbalanced which make the low precision of system for Indonesian
    language. In this study, we proposed an adjusting pattern weight to address unbalanced data problem
    for Indonesian language. The experiment results show that the proposed approach can improve the
    precision for unbalanced Indonesian data.

    List of Figures 3.1 Classi cation framework . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 Plutchik's wheel of emotions . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 The distribution of testing set . . . . . . . . . . . . . . . . . . . . . . 20 5.2 The comparison label of testing set between 2 people . . . . . . . . . 21 5.3 The precision of system and each emotion . . . . . . . . . . . . . . . 23 5.4 Adjust pattern weight for fear using di erent value of x; yandz . . . . 27 5.5 Adjust pattern weight for fear Level I . . . . . . . . . . . . . . . . . . 28 5.6 The best result for fear by adjusting weight of patterns . . . . . . . . 29 5.7 Adjust pattern weight for surprise using di erent value of x, y and z . 30 5.8 Adjusting value of x for surprise by ignoring value of z . . . . . . . . 30 5.9 Adjusting value of y for surprise by ignoring value of z . . . . . . . . 31 5.10 Comparison the precision of surprise . . . . . . . . . . . . . . . . . . 31 5.11 Adjust pattern weight for disgust using di erent value of x; y and z . 32 5.12 Comparison the precision of disgust . . . . . . . . . . . . . . . . . . . 32 5.13 Compilation results of adjusting pattern weight for minority class . . 33

    Bibliography
    [1] A. J. McMinn, D. Tsvetkov, T. Yordanov, A. Patterson, R. Szk, J. A. Ro-
    driguez Perez, and J. M. Jose, \An interactive interface for visualizing events
    on twitter," in Proceedings of the 37th International ACM SIGIR Conference on
    Research & Development in Information Retrieval, SIGIR '14, (New York,
    NY, USA), pp. 1271{1272, ACM, 2014.
    [2] T. Sakaki, M. Okazaki, and Y. Matsuo, \Tweet Analysis for Real-Time Event
    Detection and Earthquake Reporting System Development," IEEE Transactions
    on Knowledge and Data Engineering, vol. 25, pp. 919{931, Apr. 2013. 00059.
    [3] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, \Predicting
    elections with twitter: What 140 characters reveal about political sentiment.,"
    ICWSM, vol. 10, pp. 178{185, 2010.
    [4] M. Hu and B. Liu, \Mining and summarizing customer reviews," in Proceedings
    of the tenth ACM SIGKDD international conference on Knowledge discovery and
    data mining, pp. 168{177, ACM, 2004.
    [5] B. Pang, L. Lee, and S. Vaithyanathan, \Thumbs up?: sentiment classi cation
    using machine learning techniques," in Proceedings of the ACL-02 conference on
    Empirical methods in natural language processing-Volume 10, pp. 79{86, Associ-
    ation for Computational Linguistics, 2002.
    [6] A. Z. Ari n, Y. A. Sari, E. K. Ratnasari, and S. Mutro n, \Emotion Detection
    of Tweets in Indonesian Language using Non-Negative Matrix Factorization,"International Journal of Intelligent Systems and Applications, vol. 6, pp. 54{61,
    Aug. 2014.
    [7] C. Argueta, Y.-S. Chen, and E. Saravia, \Unsupervised graph-based patterns
    extraction for emotion classi cation," in 2015 IEEE/ACM International Con-
    ference on Advances in Social Networks Analysis and Mining (ASONAM 2015),
    2015.
    [8] R. Plutchik, \The natural of emotions," American Scientist, vol. 89, pp. 344{350,
    July 2001.
    [9] A. F. Wicaksono, C. Vania, T. Bayu Distiawan, and M. Adriani, \Automatically
    building a corpus for sentiment analysis on indonesian tweets," The 28th Paci c
    Asia Conference on Language, Information and Computation, 2014.
    [10] V. Wijaya, A. Erwin, M. Galinium, and W. Muliady, \Automatic mood classi -
    cation of indonesian tweets using linguistic approach," in International Confer-
    ence on Information Technology and Electrical Engineering (ICITEE), pp. 41{46,
    IEEE, 2013.
    [11] Z. Yuan and M. Purver, \Predicting emotion labels for chinese microblog texts,"
    in First International Workshop on Sentiment Discovery from A ective Data
    (SDAD), 2012.
    [12] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth, \Harnessing twitter "big
    data" for automatic emotion identi cation," in Privacy, Security, Risk and Trust
    (PASSAT), 2012 International Conference on and 2012 International Conference
    on Social Computing (SocialCom), pp. 587{592, IEEE, 2012.
    [13] S. Wen and X. Wan, \Emotion Classi cation in Microblog Texts Using Class
    Sequential Rules," in Twenty-Eighth AAAI Conference on Arti cial Intelligence,
    2014.
    [14] A. Esmin, R. de Oliveira, S. Matwin, et al., \Hierarchical classi cation ap-
    proach to emotion recognition in twitter," in Machine Learning and Applica-
    tions (ICMLA), 2012 11th International Conference on, vol. 2, pp. 381{385,
    IEEE, 2012.
    [15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, \Smote: syn-
    thetic minority over-sampling technique," Journal of Arti cial Intelligence Re-
    search, pp. 321{357, 2002.
    [16] N. Japkowicz and S. Stephen, \The class imbalance problem: A systematic
    study," Intelligent Data Analysis, vol. 6, no. 5, pp. 429{449, 2002.
    [17] K. Chen, B.-L. Lu, and J. T. Kwok, \Ecient classi cation of multi-label and
    imbalanced data using min-max modular classi ers," in International Joint Con-
    ference on Neural Networks (IJCNN), pp. 1770{1775, IEEE, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE