研究生: |
羅烈熹 Lieh-hsi Lo |
---|---|
論文名稱: |
積體化質流量控制關鍵組件 An Integrated Mass Flow Control Key Component |
指導教授: |
黃瑞星
Ruey-Shing Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 152 |
中文關鍵詞: | 微機電 、流量感測 、流量計 、微閥 、流量 、感測器 |
外文關鍵詞: | mems, flowsensor, flow sensor, microvalve, micro valve, sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文提出微閥與質流量感測器的整合製程,設計並製作了熱式內建通道型流量感測器及熱挫曲致動式微閥模組,並且建立共用測試平台,將質流量感控元件的設計、製作、封裝、測試程序標準化。
本論文研究所製作的熱式內建通道型流量感測器有兩種類型,一是矽薄膜型,一是Polyimide薄膜型。矽薄膜型流量感測器在定電壓操作模式下量測氮氣,在300 sccm的流量範圍內,解析度達 1 sccm;矽薄膜型流量感測器亦可以量測液體,量測水的流量範圍達3g/min。本論文並且提出簡易量測方法,以預判熱式內建通道型流量感測器在雙根熱敏電阻定溫操作模式下的輸出特性;根據此判定法,可明顯判斷Polyimide薄膜型流量感測器的靈敏度較矽薄膜型流量感測器為佳。本論文更進一步引進矽長型質量塊(Channel Modulator)以調整流道結構,有效改進Polyimide薄膜型流量感測器的線性度及量測範圍。
本論文研究所製作的熱挫曲致動式微閥有三種類型,一是薄膜式(Membrane Type)微閥,一是橋式(Bridge Type)微閥,一是十字式(Cross Type) 微閥。薄膜式微閥的控制流量範圍為 16 sccm。橋式微閥的控制流量範圍為 165 sccm,橋式微閥開啟反應時間為 349 ms,關閉反應時間為 572 ms。
Abstract
A monolithic design and fabrication process is proposed and realized for the thermal buckling micro valve and the built-in flow channel mass flow sensor modules in the thesis. The manufacturing procedure for the mass flow sensing and control devices design, fabrication, package, and testing is standardized through the concept of module design and the common testing platform.
There are two types of built-in flow channel mass flow sensor fabricated in the thesis; one is silicon membrane type, the other is polyimide membrane type. The sensitivity of the silicon membrane type flow sensor is about 1sccm for nitrogen measurement biased by constant voltage for 0~300 sccm measurement range. The silicon membrane type flow sensor could also be applied for liquid flow measurement. The water flow measurement range is about 3g/min。An easy way to compare different sensor characteristics is proposed to show the better sensor structure design. The polyimide membrane type flow sensor exhibits superior characteristics than the silicon membrane type by this way. The measurement range and linearity of the polyimide membrane type flow sensor is significantly improved by the introduction of Silicon Channel Modulator.
Three thermal buckling micro valves are fabricated in the thesis; membrane-type, bridge-type and cross-type. The flow control range of the membrane-type micro valve is about 16 sccm. The flow control range of the bridge-type micro valve is improved to 165 sccm. The response time of the bridge-type micro valve is measure: 349 ms to open, 572 ms to close.
參考資料
[1.1] Rasmussen, Angela, and Zaghloul, Mona E., “In
the Flow With MEMS,” IEEE Circuits and Devices
Magazine, vol. 14, no. 4, pp. 15-19, July 1998.
[1.2] “FLOW AND LEVEL”, OMEGA MEASUREMENT HANDBOOK AND
ENCYCLOPEDIA
[1.3] Carr J. J. “Sensors and Circuits” Prentice Hall
Inc. 1993
[1.4] World Flow Sensor Markets, released by Frost and
Sullivan (San Jose, CA)
[1.5] “微機電系統技術與應用” 國科會精密儀器發展中心, 2003
[1.6] King L.V.,“On the Convection of Heat from Small
Cylinders in a Stream of Fluid:
Determination of the Convection Constants of Small
Platium Wires with Application to Hot Wire
Anemometry,”Proc. Roy. Soc. London A, Vol 90,
pp563,1914.
[1.7] Nguyen N.T. “Micromachined flow sensors ----- a
review”Flow Meas. Instrum., Vol. 8, No. 1. pp. 7-
16, 1997
[1.8] Kersjes, R., Eichholz, J., Langerbein, A., Manoli,
Y. and Mokwa, W.,“Aintegrated sensor for invasive
blood velocity measurement” Sensors and Actuators
A, 1993, 37/38, 674-678.
[1.9] Svedin N. , K¨alvesten E. , Stemme E. , and Stemme G
¨. “A New Silicon Gas-Flow Sensor Based on Lift
Force” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,
VOL. 7, NO. 3, SEPTEMBER 1998 pp. 303-308
[1.10] Cho S. T. and Wise K. D., “ A high-performance
microflowmeter with built-in self test “ Sensors
and Actuators A, 1993, 36, 47-56
[1.11] Boillant M. A., van der Weil A. J., Hoogerwerf A.
C. and de Roojif N. F. “ A differential pressure
liquid flow sensor for flow regulaion and dosing
systems” MEMS 95, Amsterdam, 1995 , pp. 350-352
[1.12] Enoksson P. , Stemme G. and Stemme E., “ A
coriolis mass flow sensor structure in silicon”
MEMS 96, San Diego, USA, 1996
[1.13] Sparks D. , Najafi N. , “A New Densitometer Based
on MEMS Silicon Microtube Technology”
Sensorsmag, February 2004
[1.14] Sparks D. , Smith R. , Cripe J. , Schneider R. ,
Najafi N. “A Portable MEMS Coriolis Mass Flow
Sensor” IEEE Sensors Conference 2003, Toronto,
Canada, No. 8.4 p.90, Oct. 2003
[1.15] Sze S. M., Semiconductor Sensors, John Wiley &
Sons, New York, 1994, pp. 359-360.
[1.16] Higashi, Robert E., Johnson, Robert G., and Bohrer
P. J., “Flow Sensor,” U.S. Patent No. 4,501,144,
issued Feb. 26, 1985.
[1.17] Johnson R. G. and Egashi R. E., “ A highly
sensitive silicon chip microtransducer for air flow
and differential pressure sensing applications”
Sensors and Actuators A, 1987, 11, 63-67.
[1.18] “Liquid Flowmeter For Medical Devices”
http://www.machinedesign.com/ASP/
viewSelectedArticle.asp?
icleId=57835&strSite=MDSite&catId=0
[1.19] “Omron to begin selling MEMS flow sensor aimed at
medical and air-conditioning equipment”
http://ecb.omron.com.sg/whatsnew/ 260603_ D6FMEMS.htm
[1.20] Bronkhorst High-Tech B.V. 技術簡報資料
[1.21] Sensirion AG 技術資料
[1.22] Petersen K. and Brown J., “ High-precision, high-
performance mass-flow sensor with integrated
laminar flow micro-channels.” Proceedings of
Transducer 85, 1985, pp. 361-363.
[1.23] Lammerink T.S.J. , Tas N.R., Elwenspoek M. and
Fluitman J.H.J., “ Micro-liquid flow sensor”
Sensors and Actuators A, 1993, 37/38, 45-50.
[1.24] Kiehnscherf R. , Nguyen N.T. and Schulz M.,
“Elektro-karolischer Durchfluβmengensensor fur
Gase und Ole.” F&M Feinwerktechnik Mikrotechnik
Messtechnik, 9/94, 402-406.
[1.25] Nguyen N. T. and Kiehnscherf R., “ Low-cost
silicon sensors for mass flow measurement of
liquids and gases.” Sensors and Actuators A, 1995,
49, 17-20.
[1.26] Terry S.C., Jerman J.H. and Angell J.B., "A gas
chromatographic air analyzer fabricated on a
silicon wafer", IEEE Trans. Electron Dev. ED-26,
1880-1886 (1979)
[1.27] Esashi M., "Integrated microflow control systems",
Sensors and Actuators, A21-23, 161-167 (1990)
[1.28] Shoji S., Esashi M. and marsuo M., "Prototype
miniature blood gas analyzer fabricated on a
silicon wafer", Sensors and Actuators, 14, 101-107
(1988)
[1.29] Ohnstein T., Fukiura T., Ridley J. and Bonne
U., "Micromachined silicon microvalve", Proc. IEEE-
MEMS Workshop, 95-98 (1990)
[1.30] Cabuz E. , Schwichtenberg J. , DeMers B. , Satren
E. , Padmanabhan A. , & Cleo Cabuz,”MEMS-Based
Flow Controller for Flow Cytometry”, Honeywell
technical paper.
[1.31] Yanagisawa K., Kuwano H., and Tapo A., “ An
electromagnetically driven microvalve” in Tech.
Dig. of Transducer 93, pp.102-105(1993).
[1.32] Bosch D., Heimhofer B., Muck G., Seidel H., Thumser
U., and Welser W., “ A silicon microvalve with
combined electromagnetic/electrostatic actuation”
Sensors and Actuators, A37-A38, 684-692 (1992).
[1.33] Jerman H., “Electrically-activated micromachined
diagram valves”, in Tech. Dig. IEEE Sensors and
Actuators Workshop, 65-69(1990).
[1.34] Reithmuller W. and Benecke W., “Thermally excited
silicon microactuators,” IEEE Trans. Electron.
Dev., 35(6),(1998).
[1.35] Trah H.-P., Baumann H., Doring C., Goebel H.,
Grauer T., and Mettner M., “ Micromachined valve
with hydraulically actuated membrane subsequent to
a thermoelectrically controlled bimorph
cantilever”, Sensors and Actuators,A,39, 169-176
(1993).
[1.36] Barth P. W., “Silicon microvalves for gas flow
control”, in Tech. Dig. Tranducers 95, vol. 2, 276-
279(1995).
[1.37] Jerman J. H., “Semiconductor Microactuator”, U.S.
Patent #5,069,419, issued December 1991.
[1.38] Zdeblick M. J. and Angell J. B., “ A
microminiature electric-to-fluidic valve”, Tech.
Dig. Transducers 87, 827-829(1987)
[1.39] Zdeblick M. J., Anderson R., Jankowski J., Kline-
Schoder B., Christel L., Miles R., and Weber W., “
Thermopneumatically actuated microvalves and
integrated electro-fluidic circuits”, in Tech.
Dig. IEEE Solid-State Sensor and Actuator Workshop,
251-255(1994).
[1.40] “ Basics of Thermal Mass Flow Control”, UNIT
Instruments Application Note
[1.41] 科強公司技術資料
[1.42] Kei T. , Yasuko M. , Isao S. , Koichi I. , Noriyuki
K. , “Characteristics of a thermal mass-flow
sensor in vacuum systems”, Sensors and
Actuators,A,69, 62-67 (1998).
[2.1] Fox R.W., and McDonald A.T., Introduction to Fluid
Mechanics, John Wiley &Sons, New York, 1985, pp. 33-
40.
[2.2] Gerhart P. , and Gross R.J., Fundamentals of Fluid
Mechanics, Addison-Wesley Publishing Co., New York,
1985, pp. 403-407.
[2.3] Irving G. , Fluid Mechanics, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1996, pp. 206-210.
[2.4] Streeter V.L., and Wylie E.B. , Fluid Mechanics, 8th
ed., McGraw-Hill, Boston,1985, pp. 186-189.
[2.5] Sze, S. M., Semiconductor Sensors, John Wiley &
Sons, New York, 1994, pp. 335-336.
[2.6] Kovacs G.T.A., Micromachined Transducers Sourcebook,
McGraw-Hill, Boston,1998, pp. 785-787.
[2.7] Jiang X.N., Zhou Z.Y., Yao J., Li Y., and Ye X.Y.,
“Micro-fluid Flow in Microchannel,”
8thInternational Conference on Solid-State Sensors
and Actuators (Eurosensors IX),Stockholm, Sweden,
June 25-29, 1995, p. 317
[2.8] Kersjes R., Eichholz J., Langerbei A., Manoli Y. and
Mokwa W., “ An integrated sensor for invasive blood
velocity measurement”, Sensors and Actuators A,
1993, 37-38, 674-678.
[2.9] Kuttner H., Urban G., Jachimowicz A., Olcaytug F.
and Goiser P., “ Micro-miniaturized thermistors
arrays for temperature gradient, flow and perfusion
measurements”, Sensors and Actuators A, 1991, 25-
27, 641-645.
[2.10] Tong Q.Y. and Hoang J.B., “ A novel CMOS flow
sensor with constant chip temperature (CCT)
operation,” Sensors and Actuators A, 1987, 12, 9-
21.
[2.11] Yang C. and Soeberg H., “Monolithic flow sensor
for measuring millilitre per minute liquid flow”,
Sensors and Actuators A, 1992, 33, 143-153.
[2.12] Johnson R. G. and Egashi R. E., “ A highly
sensitive silicon chip micro-transducer for air
flow and differential pressure sensing
applications”, Sensors and Actuators A, 1987, 11,
63-67.
[2.13] Kiehnscherf R., Nguyen N.T. and Schulz M.,
“Elektro-karolischer Durchfluβmengensensor fur
Gase und Ole.” F&M Feinwerktechnik Mikrotechnik
Messtechnik, 9/94, 402-406.
[2.14] Lammerink T.S.J., Tas N.R., Elwenspoek M. and
Fluitman J.H.J., “ Micro-liquid flow sensor”,
Sensors and Actuators A, 1993, 37-38, 45-50.
[2.15] van Oudheusden B.W., “ The thermal modelling of a
flow sensor based on differential convective heat
transfer”, Sensors and Actuators A, 1991, 29, 93-
106.
[2.16] van Oudheusden B.W., “Silicon thermal flow
sensors”, Sensors and Actuators A, 1992, 30,5-26.
[2.17] Nguyen N.T. and Kiehnscherf R., “ Low-cost silicon
sensors for mass flow measurement of liquids and
gases.” Sensors and Actuators A, 1995, 49, 17-20.
[2.18] Rasmussen, Angela, and Zaghloul, Mona E., “In the
Flow With MEMS,” IEEE Circuits and Devices
Magazine, vol. 14, no. 4, pp. 15-19, July 1998.
[2.19] Huang Q., Menolfi C., Baltes H., “Temperature and
supply voltage stabilized power driver for flow
sensors”, Proc. Int. Conf. on solid-state Sensors
and Actuators (Trans. 95), Stockholm, Sweden, June
25-29,1995, pp. 440-442.
[2.20] van Oudheusden B.W., “ Silicon flow sensors”, IEE
Proceedings, vol. 135, pt. D, no. 5, pp. 373-380,
September 1988.