簡易檢索 / 詳目顯示

研究生: 閻映丞
Yen, Ying-Cheng
論文名稱: Dynein和dynactin在突觸囊泡運輸以及在KIF1A/UNC-104的聚集與運輸中所扮演的角色
The role of dynein and dynactin in synaptic vesicle transport and axonal KIF1A/UNC-104 clustering and motility
指導教授: 王歐力
Wagner, Oliver
口試委員: 張壯榮
詹世鵬
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 76
中文關鍵詞: 微管分子馬達KIF1A/UNC-104分子馬達dynein輔助蛋白dynactin神經軸突運輸秀麗隱桿線蟲
外文關鍵詞: KIF1A/UNC-104, dynein, dynactin, axonal transport, C. elegans
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經是高度特化的極性細胞,具有樹突以及單一長軸突。許多蛋白質在神經元的細胞體中合成,並形成突觸囊泡,經由樹突以及軸突運輸至突觸。此種運輸方式須藉由分子馬達dynein以及kinesin將化學能轉換為機械能量,於神經維管上移動所完成。然而,神經細胞內運輸物的運輸機制尚未完全了解,其中一個重要的問題為運輸物的雙向運動是由何種訊息所誘發? 其中一個被廣為接受的假設是一個運輸物上結合許多分子馬達,並透過協調作用活化以及去活化這些分子馬達,或是透過拔河作用來調控此雙向運動行為。UNC-104/KIF1A是神經專一性的kinesin,負責在神經軸突維管上運輸突觸囊泡前驅物,在神經維管上能觀察到其頻繁的雙向運動。我們假設此種雙向運輸是來自dynein於另一方向的拉力,因此,在這篇研究中,我們利用秀麗隱桿線蟲觀察dynein和dynactin突變的情況下,UNC-104的運輸情形。有趣的是,我們發現當dynein突變時,UNC-104往anterograde方向的運輸不受影響,因此推測UNC-104與dynein是透過協調機制調控突觸囊泡的雙向運輸。然而,UNC-104往retrograde方向的運動長度以及持續時間在dynein heavy chain-1 (dhc-1)突變之下,有顯著地增加,推測UNC-104或是一些輔助蛋白與DHC-1有交互作用,而干擾dynein的運動。進一步比較UNC-104和synaptobrevin (SNB-1,一種突觸囊泡蛋白)的運動模式,我們推測有其他的kinesin參與突觸囊泡的運輸。另一方面,dynactin p150次單位(線蟲中為dnc-1)的突變導致UNC-104往anterograde方向的運動長度以及持續時間增加,綜合其它文獻後推測,DNC-1可能透過與UNC-104間的交互作用來調控UNC-104的運輸。最後,觀察UNC-104和SNB-1的運動模式,我們推測在突觸囊泡的運輸中,DNC-1扮演很重要的輔助角色。


    1.Introduction 1 1.1 The nervous system of Caenorhabditis elegans (C. elegans) 1 1.2 Molecular motors and axonal transport 2 1.3 C. elegans UNC-104 (KIF1A) in axonal transport 3 1.4 Dynein proteins and transport in the axon 4 1.5 Role of dynactin in cargo transport 5 1.6 Motor coordination and tug-of-war in bidirectional transport 7 1.7 Specific aims of this study 8 2.Materials and Methods 10 2.1 Reagents 10 2.2 C. elegans maintenance 13 2.3 C. elegans strains 13 2.4 Crossing of C. elegans 14 2.5 Microinjection 15 2.6 Genotyping 16 2.7 Phenotype analysis 16 2.8 Neuronal cells isolation 17 2.9 DAPI staining in worms 17 2.10 Motility analysis 18 2.11 Image analysis 18 3.Results 20 3.1 Motility analysis of UNC-104 and SNB-1 in living worms 20 3.2 UNC-104 motility is affected in dhc-1 point mutation worms 22 3.3 Transport of synaptic vesicles is affected in dhc-1 point mutation worms 23 3.4 Dynactin p150 subunit affects UNC-104 motility 25 3.5 Dynactin may play different roles in the transport of synaptic vesicles 27 3.6 Dynein light chain (DLC-1/LC-8) expression pattern and motility analysis 27 4.Discussion 29 4.1 Evidence that UNC-104 bidirectional transport may be mediate by a coordinated mechanism 29 4.2 Synaptic vesicles may also be transported by kinesin-1 in C. elegans 30 4.3 Dynactin may interact with UNC-104 and impair UNC-104 motions 32 4.4 DNC-1 may be an important adaptor to regulate different kinesins and dynein activities in synaptic vesicles transport 34 4.5 The role of DNC-1 in neuronal diseases 34 5. Future perspectives 36 6. References 37 7. Tables 42 8. Figures 45 9. Appendix 73

    1. Chalfie, M. and J. Sulston, Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol, 1981. 82(2): p. 358-70.
    2. Hirokawa, N. and R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 2005. 6(3): p. 201-14.
    3. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-38.
    4. Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80.
    5. Duncan, J.E. and L.S. Goldstein, The genetics of axonal transport and axonal transport disorders. PLoS Genet, 2006. 2(9): p. e124.
    6. De Vos, K.J., et al., Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 2008. 31: p. 151-73.
    7. Okada, Y., et al., The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 1995. 81(5): p. 769-80.
    8. Hall, D.H. and E.M. Hedgecock, Kinesin-related gene unc-104 is required for axonal-transport of synaptic vesicles in C-elegans. Cell, 1991. 65(5): p. 837-847.
    9. Klopfenstein, D.R., et al., Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 2002. 109(3): p. 347-58.
    10. Tomishige, M., D.R. Klopfenstein, and R.D. Vale, Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science, 2002. 297(5590): p. 2263-2267.
    11. Okada, Y. and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science, 1999. 283(5405): p. 1152-7.
    12. Okada, Y. and N. Hirokawa, Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci U S A, 2000. 97(2): p. 640-5.
    13. Okada, Y., H. Higuchi, and N. Hirokawa, Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. NATURE, 2003. 424(6948): p. 574-7.
    14. Hirokawa, N., R. Nitta, and Y. Okada, The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol, 2009. 10(12): p. 877-84.
    15. Yonekawa, Y., et al., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol, 1998. 141(2): p. 431-41.
    16. Zhao, C., et al., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell, 2001. 105(5): p. 587-97.
    17. Karki, S. and E.L. Holzbaur, Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol, 1999. 11(1): p. 45-53.
    18. Kardon, J.R. and R.D. Vale, Regulators of the cytoplasmic dynein motor. Nature Reviews Molecular Cell Biology, 2009. 10(12): p. 854-865.
    19. Milisav, I., Dynein and dynein-related genes. Cell Motil Cytoskeleton, 1998. 39(4): p. 261-72.
    20. King, S.M., AAA domains and organization of the dynein motor unit. Journal of Cell Science, 2000. 113(14): p. 2521-2526.
    21. Reck-Peterson, S.L. and R.D. Vale, Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2004. 101(6): p. 1491-5.
    22. Cho, C., S.L. Reck-Peterson, and R.D. Vale, Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J Biol Chem, 2008. 283(38): p. 25839-45.
    23. Asai, D.J. and M.P. Koonce, The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol, 2001. 11(5): p. 196-202.
    24. Gill, S.R., et al., Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. Journal of Cell Biology, 1991. 115(6): p. 1639-1650.
    25. Schroer, T.A. and M.P. Sheetz, Two activators of microtubule-based vesicle transport. J Cell Biol, 1991. 115(5): p. 1309-18.
    26. Schroer, T.A., Dynactin. Annu Rev Cell Dev Biol, 2004. 20: p. 759-79.
    27. Holleran, E.A., et al., beta III spectrin binds to the Arp1 subunit of dynactin. J Biol Chem, 2001. 276(39): p. 36598-605.
    28. Holleran, E.A., et al., Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J Cell Biol, 1996. 135(6 Pt 2): p. 1815-29.
    29. Hoogenraad, C.C., et al., Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. Embo Journal, 2001. 20(15): p. 4041-4054.
    30. Starr, D.A., et al., ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol, 1998. 142(3): p. 763-74.
    31. Vaughan, K.T. and R.B. Vallee, Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol, 1995. 131(6 Pt 1): p. 1507-16.
    32. King, S.J., et al., Analysis of the dynein-dynactin interaction in vitro and in vivo. Molecular Biology of the Cell, 2003. 14(12): p. 5089-5097.
    33. Hsu C.C., Moncaleano J.D.,and Wagner, O.I., Sub-cellular distribution of unc-104(Kif1a) upon binding to adaptors as unc-16(Jip3), dnc-1(dctn1/Glued) and syd-2(liprin-alpha) in C. Elegans Neurons. Neuroscience, 2011. 176: p. 39-52.
    34. Schroer, T.A. and M.A. Berezuk, Dynactin enhances the processivity of kinesin-2. Traffic, 2007. 8(2): p. 124-129.
    35. Blangy, A., L. Arnaud, and E.A. Nigg, Phosphorylation by p34(cdc2) protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150(Glued). Journal of Biological Chemistry, 1997. 272(31): p. 19418-19424.
    36. Pilling, A.D., et al., Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell, 2006. 17(4): p. 2057-68.
    37. Puls, I., et al., Mutant dynactin in motor neuron disease. Nat Genet, 2003. 33(4): p. 455-6.
    38. Levy, J.R. and E.L.F. Holzbaur, Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. International Journal of Developmental Neuroscience, 2006. 24(2-3): p. 103-111.
    39. Gross, S.P., Hither and yon: a review of bi-directional microtubule-based transport. Phys Biol, 2004. 1(1-2): p. R1-11.
    40. Welte, M.A., Bidirectional transport along microtubules. Curr Biol, 2004. 14(13): p. R525-37.
    41. Ligon, L.A., et al., A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. Journal of Biological Chemistry, 2004. 279(18): p. 19201-19208.
    42. Murray, J.W., E. Bananis, and A.W. Wolkoff, Reconstitution of ATP-dependent movement of endocytic vesicles along microtubules in vitro: an oscillatory bidirectional process. Mol Biol Cell, 2000. 11(2): p. 419-33.
    43. Ma, S. and R.L. Chisholm, Cytoplasmic dynein-associated structures move bidirectionally in vivo. J Cell Sci, 2002. 115(Pt 7): p. 1453-60.
    44. Rogers, S.L., et al., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc Natl Acad Sci U S A, 1997. 94(8): p. 3720-5.
    45. Hendricks, A.G., et al., Motor Coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Current Biology, 2010. 20(8): p. 697-702.
    46. Mondal, S., et al., Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic, 2011. 12(4): p. 372-85.
    47. Tien, N.W., et al., Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis, 2011. 43(2): p. 495-506.
    48. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19605-10.
    49. Brenner, S., The genectics of Caenorhabdztzs elegans. Genetics, 1973. 77: p. 77.
    50. Stinchcomb, D.T., et al., Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol, 1985. 5(12): p. 3484-96.
    51. Mello, C.C., et al., Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J, 1991. 10(12): p. 3959-70.
    52. Strange, K., M. Christensen, and R. Morrison, Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nature Protocols, 2007. 2(4): p. 1003-1012.
    53. Christensen, M., et al., A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron, 2002. 33(4): p. 503-14.
    54. Gross, S.P., et al., Coordination of opposite-polarity microtubule motors. J Cell Biol, 2002. 156(4): p. 715-24.
    55. Hamill, D.R., et al., Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev Cell, 2002. 3(5): p. 673-84.
    56. Nonet, M.L., Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J Neurosci Methods, 1999. 89(1): p. 33-40.
    57. Nonet, M.L., et al., Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci, 1998. 18(1): p. 70-80.
    58. Schmidt, D.J., et al., Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell, 2005. 16(3): p. 1200-12.
    59. Kon, T., et al., Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry, 2004. 43(35): p. 11266-74.
    60. Ally, S., et al., Opposite-polarity motors activate one another to trigger cargo transport in live cells. J Cell Biol, 2009. 187(7): p. 1071-82.
    61. Hurd, D.D. and W.M. Saxton, Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics, 1996. 144(3): p. 1075-85.
    62. Sato-Yoshitake, R., et al., The phosphorylation of kinesin regulates its binding to synaptic vesicles. J Biol Chem, 1992. 267(33): p. 23930-6.
    63. Takamori, S., et al., Molecular anatomy of a trafficking organelle. Cell, 2006. 127(4): p. 831-46.
    64. Encalada, S.E., et al., A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo. Mol Biol Cell, 2005. 16(3): p. 1056-70.
    65. Koushika, S.P., et al., Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci, 2004. 24(16): p. 3907-16.
    66. Kwinter, D.M., et al., Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience, 2009. 162(4): p. 1001-10.
    67. Farrer, M.J., et al., DCTN1 mutations in Perry syndrome. Nat Genet, 2009. 41(2): p. 163-5.
    68. Levy, J.R., et al., A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol, 2006. 172(5): p. 733-45.
    69. Dupuis, L., et al., Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons. Neurobiol Dis, 2000. 7(4): p. 274-85.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE