研究生: |
林哲毅 Che-Yi Lin |
---|---|
論文名稱: |
應用液-液-液微萃取配合高效液相層析儀偵測水中磺胺藥、氯酚化合物、硝基酚化合物與烷基酚化合物 Application of liquid-liquid-liquid microextraction and high performance liquid chromatography for the determination of sulfonamides, chlorophenols, nitrophenols, and alkylphenols in water |
指導教授: |
黃賢達
Shang-Da Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 微萃取 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來利用微萃取技術分析水樣是越來越普遍,微萃取是環境友善、低成本且操作簡易的技術。
在本文中利用一種名為液-液-液微萃取的技術,去分別萃取水中待測的磺胺藥、氯酚化合物、硝基酚化合物與烷基酚化合物。液-液-液微萃取技術是藉由pH值調整使待測物解離或不解離,因而調控待測物的親水性,使待測物能由水樣授予相萃取到有機相,再從有機相萃取至接受相。萃取後在接受相的待測物直接以高效液相層析儀作分析。為了能最佳化實驗條件,將藉由理論模擬來探討哪些參數可以影響萃取效率。實驗中液-液-液微萃取技術被設計為動態的模式以及在非平衡的考量下去萃取水中待測分析物;且在單變法下去操作萃取而確認每一個參數效應後,再指定一組合理參數值作為實驗的參數設定。在所選擇的參數設定下,操作萃取分析而求得相對標準偏差、線性與方法偵測極限,以作為此一技術的成效評估。優越的萃取效率源自於實驗的參數設定是相當接近最佳化的實驗條件。此外,也利用此一技術分析環境水樣來確認實際應用的可行性,操作液-液-液微萃取技術時,水樣的基質效應將造成待測物從授與相經由有機相遷移到接收相的過程會受到干擾,從結果來看,液-液-液微萃取的基質效應是不明顯的。
依實驗所能達到的偵測結果,驗證了此一用來分析水中這些微量待測物的技術是非常有力的。
Currently, microextraction is being used more and more for aqueous sample analysis. The microextraction technique is environmentally-friendly, less expensive, and simple to operate. In the study a microextraction technique termed as liquid-liquid-liquid microextraction (LLLME) was implemented to extract sulfonamides, chlorophenols, nitrophenols, and alkylphenols in water. The LLLME technique can control the analytes into uncharged or charged species by pH adjustment, the target compounds were extracted from the donor phase (i.e., a water sample) into the organic phase and then extracted into the acceptor phase (i.e., the extractant). The extracted target analytes in the donor phase were directly separated and quantitated by high performance liquid chromatography (HPLC). To pursue optimum condition in LLLME, extraction parameters dominating extraction efficiency were investigated by theoretical considerations. The LLLME technique under dynamic mode and non-equilibrium consideration was applied for determination of these target analytes in water. The univariant method was conducted to identify extraction parameters for the designation of parameter settings in this dynamic LLLME technique. Relative standard deviation, coefficient of estimation, and detection limit were realized to assess analysis performance under selected parameter settings. The parameter settings of LLLME close to optimization was responsible for an acceptable extraction efficiency. In addition, real field water samples were analysed to demonstrate the practical applicability. The results suggested that matrix effect, interfering in the transport of target compounds from the donor phase through the organic phase and finally into the acceptor phase, was limited. Consequently, the study reachable of the determination confirms LLLME combined with HPLC to be robust to monitoring these target analytes in trace levels.
1. C.L. Arthur, J. Pawliszyn, Anal. Chem. 62 (1990) 2145.
2. E. Psillakis, N. Kalogerakis, Trends Anal. Chem. 21 (2002) 53.
3. G. Shen, H.K. Lee, Anal. Chem. 74 (2002) 648.
4. M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116 (2006) 1.
5. S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem. 71 (1999) 2650.
6. J.M. Wu, K.H. Ee, H.K. Lee, J. Chromatogr. A 1082 (2005) 121.
7. L. Hou, H.K. Lee, Anal. Chem. 75 (2003) 2784.
8. X. Jiang, S.Y. Oh, H.K. Lee, Anal. Chem. 77 (2005) 1689.
9. C.C. Chen, M. B. Melwanki, S.D. Huang, J. Chromatogr. A 1140 (2006) 33.
10. J.F. Liu, J.A. Jonsson, P. Mayer, Anal. Chem. 77 (2005) 4800.
11. M. Marlow, R.J. Hurtubise, Talanta 69 (2006) 443.
12. Definition and Procedure for the Determination of the Method Detection Limit, Revision 1.11 (40. CFR Part 136, Appendix B), U.S. EPA, 2004.
13. J.C. Chee-Sanford, R.I. Aminov, I.J. Krapac, N. Garrigues-Jeanjean, R.I. Mackie, Appl. Environ. Microbiol. 67 (2001) 1494.
14. American Society of Microbiologists. The role of antibiotics in agriculture, Critical Issues Colloquia. D.C. Washington: American Academy of Microbiology 2002.
15.飼料營養雜誌,九一年四期76~90頁,氰胺公司。
16. S. Yang, K. Carlson, Water Research 37 (2003) 4645.
17. A.T. Florence, D. Attwood, Physicochemical Principles of Pharmacy, 4th edition, Pharmaceutical Press, London, 2006, p. 79, 82.
18. V.B. Reeves, J. Chromatogr. B 723 (1999) 127.
19. J.F. Jen, H.L. Lee, B.N. Lee, J. Chromatogr. A 793 (1998) 378.
20. C. Hartig, T. Storm, M. Jekel, J. Chromatogr. A 854 (1999) 163.
21. M.E. Lindsey, M. Meyer, E.M. Thurman, Anal. Chem. 73 (2001) 4640.
22. V.K. Balakrishnan, K.A. Terry, J. Toito, J. Chromatogr. A 1131 (2006) 1.
23. A. Pagliara, P. A. Carrupt, G. Caron, P. Gaillard, B. Testa, Chem. Rev. 97 (1997) 3385.
24. S. C. Su, A. V. Hartkopf, B. L. Karger, J. Chromatogr. 119 (1976) 523.
25. S. Huq, A. Dixon, J. Teuscher, K. Kallury, Technique: SPE Application Note: TN-010, (2003) Phenomenex Inc., CA, USA.
26. H. Lo, W. L. Hayton, Journal of Pharmacokinetics and Pharmacodynamics 9 (1981) 443.
27. 工業技術研究院工業技術發展中心,危險物(一)環保署新公告十三種毒化物標示與物質安全資料範例,1994。
28. 金相燦、程振華、徐南妮、李海生,環境毒物有機污染物化學,1st ed ;淑馨出版社,1998。
29. 江文仁、袁紹英,張碧芬、潘子明,環境研究中心環境調查年報,1993,94。
30. 將增列飲用水七項農藥管制標準,行政院環境保護署新聞稿(94/03/06)
31. National Primary Drinking Water Regulations, U.S. EPA, 1998.
32. 水中半揮發性有機化合物檢測方法-氣相層析質譜儀法,中華民國91年12月25日環署檢字第0910091017號公告。
33. J. Frebotaùa, V. Tatarkovicovà, Analyst 119 (1994) 1519.
34. 鍾莉雯,「液相微萃取法於水中微量氯酚的偵測」國立中興大學化學研究所,碩士論文(2002)
35. METHOD 8041A, Phenols by Gas Chromatography, EPA, November 2000.
36. D. A. Skoog; J. J. Leary,Principles of Instrumental Analysis, 4th edition,p. 156; p. 181, Saunders college publishing,1992.
37.J. F. Liu; X. Liang, Y. G. Chi, G. B. Jiang; Y. Q. Cai, Q. X. Zhou, G. G. Liu, Anal. Chim. Acta 487 (2003) 129.
38.C. Mahugo Santana ; Z. Sosa Ferrera; J. J. Santana Rodríguez, Anal. Bioanal. Chem. 382, 125 (2005).
39.E. González-Toledo ; M.D. Prat ; M.F. Alpendurada, J. Chromatogr. A 923, 45 (2001)
40. Waters Quality Parts□, Chromatography Columns and Supplies Catalog, Waters Corporation, 2006-2007, p67.
41. Current National Recommended Water Quality Criteria, U.S. EPA 2005.
42. A. Pagliara, P.A. Carrupt, G. Caron, P. Gaillard, B. Testa, Chem. Rev. 97 (1997) 3385.
43. F. Jaber, C. Schummer, J. Al Chami,P. Mirabel, M. Millet, Anal. Bioanal. Chem. 387 (2007) 2527.
44. A. Takahashi, T. Higashitani, Y. Yakou, M. Saitou, H. Tamamoto, H. Tanaka, Water Sci. Technol. 47 (2003) 71.
45. G. Gatidou, N.S. Thomaidis, A.S. Stasinakis, T.D. Lekkas, J. Chromatogr. A 1138 (2007) 32.
46. M.D. Hernando, M. Mezcua, M.J. Gómez, O. Malato, A. Agüera, A.R. Fernández-Alba, J. Chromatogr. A 1047 (2004) 129.
47. R. Loos, G. Hanke, G. Umlauf, S.J. Eisenreich, Chemosphere 66 (2007) 690.
48. J.B. Baugros, B. Giroud, G. Dessalces, M.F. Grenier-Loustalot, C. Cren-Olivé, Anal. Chim. Acta 607 (2008) 191.
49. Y. Cai, G. Jiang, J. Liu, X. Liang, Z. Yao, J. Liu, J. Liu, Q. Zhou, Anal. Lett. 37 (2004) 739.