簡易檢索 / 詳目顯示

研究生: 黃至弘
Huang, Chih-Hung
論文名稱: 中孔洞氧化矽材吸附與光催化行為之研究
The investigation of sorption and photocatalytic behavior of mesoporous silica material: SBA-15
指導教授: 王竹方
Wang, Chu-Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 145
中文關鍵詞: 中孔洞染料吸附光催化二氧化碳
外文關鍵詞: mesoporous, SBA-15, dye, adsorption, photocatalysis, carbon dioxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對中孔洞氧化矽材於染料和二氧化碳處理之應用,首先自行合成有序規則排列之中孔洞氧化矽材(mesoporous silica, SBA-15),將過渡金屬(鈦)引入材料內,讓材料具有催化活性,可解決傳統奈米級二氧化鈦使用上所面臨的分散化與回收等問題;再將貴重金屬(鉑)或具有輻射致效之稀土元素(鈰)披覆在含有鈦之複合材料表面,增加其催化活性以及擴展光源應用範圍。另外也嘗試將鹼土金屬(鈣)披覆在SBA-15上做為吸附二氧化碳之活性擔體,利用SBA-15優良的結構特性來強化氧化鈣在多次循環操作下結構的穩定性。所有經過高溫鍛燒後得到之功能性複合材料均利用分析儀器建立材料之物化性質與性能,例如:利用ICP分析材料成份組成;利用XRD分析晶相結構;以氮氣等溫吸/脫附實驗了解表面特性變化;以SEM探討其表面形貌變化;利用TEM觀察其孔洞與孔道結構…等等。另外本研究也建立吸附與催化等實驗裝置,探討自行製備的中孔洞氧化矽複合材料對於染料吸附與光催化降解之性能,以及二氧化碳捕集的能力。
    本研究發展出兼具吸附及光催化功能之複合材料,利用其協同效應可以有效將環境中的染料吸附然後在實驗室中完全分解,達到材料再生進而再利用的效果。此外,披覆氧化鈣之複合材料可以在中高溫環境中有效吸附二氧化碳,且經過多次循環使用後仍維持不錯的效率和結構穩定性。


    The purpose of this research is to study the dye removal and carbon dioxide capture by mesoporous silica. In this work, the textual and structural properties of all prepared materials are characterized by inductively coupled plasma-mass spectrometer (ICP-MS), powder X-ray diffraction (XRD) patterns, nitrogen physisorption isotherms, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In the beginning, highly ordered mesoporous silica, Santa Barbara Amorphous-15 (SBA-15), and titanium-substituted mesoporous silica (TiSBA-15) materials were synthesized, characterized, and evaluated. In terms of adsorption properties, the performance is examined by adsorption of dyes on SBA-15 and TiSBA-15 materials which are validated to be effective adsorbents for cationic dyes. In terms of photocatalytic properties, the performance is examined by photocatalytic degradation of dyes on TiSBA-15. It’s indicated that TiSBA-15 possess the synergistic effect of adsorptive and photocatalytic ability. The regeneration and cyclic performance is also prospective. These results revealed that TiSBA-15 has much potential to be one effective alternative material for dye removal. Furthermore, platinum and cerium ions are photodeposited onto TiSBA-15 powders in order to improve photocatalytic performance or induce radio-sensitive effect in the degradation of dye. On the other hand, calcium ions are dispersed onto mesoporous silica using impregnation method. The thermo-gravimetric analysis is used to test the performance of carbon dioxide capture using prepared calcium-based sorbents. The property and carbon dioxide sorption ability of the substrates and sorbents are examined and discussed. It is demonstrated that carbon dioxide can be effectively adsorbed, concentrated, and separated using the reasonable reaction paths. The long-term durability of prepared sorbents is also confirmed by carbon dioxide sorption/desorption cycle test under high temperature.

    中文摘要 ............................................................................................................ I Abstract .............................................................................................................. II 謝誌 …………………………………………………………………………… IV Content Index ..................................................................................................... VIII Figure Index ....................................................................................................... XI Table Index ......................................................................................................... XIV Chapter 1 Introduction .....………………………………….………………… 1 Chapter 2 Literature review ...…...…………………....................…………... 8 2-1 Dye removal techniques …………………………………………….. 8 2-2 Carbon dioxide issue ………...………....…................….…………... 18 2-3 Mesoporous material ……...............................…………………….... 22 2-4 Photocatalysis ………………..………….........................................… 27 2-5 Metal modification onto photocatalyst ....………………………….. 30 Chapter 3 Experiments .....…………………………………………………… 34 3-1 Materials ……………..…………………............................................. 34 3-2 Preparation methods ……………………………………………...… 36 3-3 Characterization methods ...……………………………………..…. 39 3-3-1 Elemental quantitative analysis …………………………..… 39 IX 3-3-2 Crystalline structure analysis ………….………………….... 40 3-3-3 Textural property analysis ………………………………..… 40 3-3-4 Morphology analysis ……………………..…......…………… 42 3-3-5 Electrokinetic potential analysis ……………..………...…… 42 3-4 Performance tests ..…….……………………..………....……..……. 43 3-4-1 Adsorption of dyes …....………………….…..……………… 43 3-4-2 Photocatalytic degradation of dyes ………….……………… 44 3-4-3 Radiocatalytic degradation of dyes ………………………… 46 3-4-4 Adsorption of carbon dioxide ………………………..……… 47 Chapter 4 Results and discussion .…….………………………………...…… 49 4-1 Adsorption of cationic dyes onto mesoporous silica ………….…… 49 4-1-1 Characterization ………………………………………...…… 49 4-1-2 Adsorption of different dyes ………………………………… 54 4-1-3 Adsorption isotherms …………………………………...…… 56 4-1-4 Adsorption kinetics ……………………………………..…… 60 4-1-5 Thermodynamics …………………………………..………… 63 4-2 Characterization and application of Ti-containing mesoporous silica for dye removal with synergistic effect of coupled adsorption and photocatalytic oxidation …………………...……… 63 4-2-1 Characterization …………………………………………...… 65 X 4-2-2 Adsorption behavior ………………………………………… 76 4-2-3 Photocatalytic behavior …………………………………...… 84 4-3 Characterization, modification of mesoporous TiSBA-15 and the improvement in photocatalytic performance ………………...…… 90 4-3-1 Characterization ……………………………………...……… 90 4-3-2 Photocatalytic behavior under UV radiation …………….… 101 4-3-3 Radiocatalytic behavior under gamma radiation …………. 108 4-4 Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica …………………………………….… 114 4-4-1 Characterization …………………………………..……….… 114 4-4-2 Carbon dioxide capture behavior ………………..……….… 120 Chapter 5 Conclusion and suggestion ..................………….…………...…… 124 Acknowledgement ……………………………………………………..……… 131 Reference ..................………...........................………………………………... 132 Appendix ………………………………………………………………………. 143

    [1]
    E. Forgacs, T. Cserh□ti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int. 30 (2004) 953-971.
    [2]
    V. K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review, J. Environ. Manage. 90 (2009) 2313-2342.
    [3]
    E. Lorenc-Grabowska, G. Gryglewicz, Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon, Dyes Pigments 74 (2007) 34-40.
    [4]
    M.A. Zanjanchi, H. Golmojdeh, M. Arvand, Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41, J. Hazard. Mater. 169 (2009) 233-239.
    [5]
    V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou, C. Trapalis, Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles, J. Hazard. Mater. 170 (2009) 836-844.
    [6]
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 279 (1998) 548-552.
    [7]
    A.A. Attia, B.S. Girgis, S.A. Khedr, Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenolics, J. Chem. Technol. Biotechnol. 78 (2003) 611−619.
    [8]
    I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination 225 (2008) 13−28.
    [9]
    A. Rodr□guez, J. Garc□a, G. Ovejero, M. Mestanza, Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics, J. Hazard. Mater. 172 (2009) 1311−1320.
    [10]
    B. Armağan, O. Őzdemir, M. Turan, M.S. Celik, The removal of reactive azo dyes by natural and modified zeolites, J. Chem. Technol. Biotechnol. 78 (2003)
    133
    725−732.
    [11]
    A.B. Engin, □. □zdemir, M. Turan, A.Z. Turan, Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method, J. Hazard. Mater. 159 (2008) 348−353.
    [12]
    S.A. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Simulated cotton dye effluents treatment and reuse by nanofiltration, Desalination 221 (2008) 259−267.
    [13]
    J. Sun, Y. Hu, Z. Bi, Y. Cao, Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell, Bioresource Technol. 100 (2009) 3185−3192.
    [14]
    L. Zheng, Y. Su, L. Wang, Z. Jiang, Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique, Sep. Purif. Technol. 68 (2009) 244−249.
    [15]
    W. Lau, A.F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modeling, and fouling control – a review, Desalination 245 (2009) 321−348.
    [16]
    J. Wu, C. Liu, K.H. Chu, S. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Membr. Sci. 309 (2008) 239−245.
    [17]
    Y. Zhou, Z. Liang, Y. Wang, Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate, Desalination 225 (2008) 301−311.
    [18]
    Q.Y. Yue, B.Y. Gao, Y, Wang, H, Zhang, X. Sun, S.G.. Wang, R.R. Gu, Synthesis of polyamine flocculants and their potential use in treating dye wastewater, J. Hazard. Mater. 152 (2008) 221−227.
    [19]
    C.A. Mart□nez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B-Environ. 87 (2009) 105−145.
    134
    [20]
    J. Sun, S. Shi, Yi. Lee, S. Sun, Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution, Chem. Eng. J. 155 (2009) 680−683.
    [21]
    E.R. Bandala, L. Brito, M. Pelaez, Degradation of domic acid toxin by UV-promoted Fenton-like processes in seawater, Desalination 245 (2009) 135−145.
    [22]
    U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520−529.
    [23]
    P. Gayathri, R.P.J.D. Dorathi, K. Palanivelu, Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions, Ultrason. Sonochem. 17 (2010) 566−571.
    [24]
    A.H. Konsowa, M.E. Ossman, Y. Chen, J.C. Crittenden, Decolorization of industrial wastewater by ozonation followed by adsorption on activation carbon, J. Hazard. Mater. 176 (2010) 181−185.
    [25]
    R. Ahmad, P.K. Mondal, S.Q. Usmani, Hybrid UASFB-aerobic bioreactor for biodegradation of acid yellow-36 in wastewater, Bioresource Technol. 101 (2010) 3787−3790.
    [26]
    L. Pereira, A.V. Coelho, C.A. Viegas, M.M. Correia dos Santos, M.P. Robalo, L.O. Martins, Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase, J. Biotechnol. 139 (2009) 68−77.
    [27]
    S. Wang, H. Li, L. Xu, Application of zeolite MCM-22 for basic dye removal from wastewater, J. Colloid Interface Sci. 295 (2006) 71−78.
    [28]
    X. Yuan, S.P. Zhuo, W. Xing, H.Y. Cui, X.D. Dai, X.M. Liu, Z.F. Yan, Aqueous dye adsorption on ordered mesoporous carbons, J. Colloid Interface Sci. 310 (2007) 83−89.
    [29]
    W. Dong, C.W. Lee, X. Lu, Y. Sun, W. Hua, G. Zhuang, S. Zhang, J. Chen, H. Hou, D. Zhao, Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye, Appl. Catal. B-Envorin. 95 (2010)
    135
    197−207.
    [30]
    J.M. Smith, Chemical engineering kinetics, 2nd ed., Donnelley and Sons Company (1981), New York.
    [31]
    I. Langmuir, The Constitution and Fundamental Properties of Solids and Liquids. . Liquids, J. Am. Chem. Soc. 39 (1917) 1848−1906.Ⅱ
    [32]
    H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385−470.
    [33]
    G. McKay, Adsorption of dyestuffs from aqueous solutions with activated carbon : Equilibrium and batch contactⅠ-time studies, J. Chem. Tech. Biotech. 32 (1982) 759−772.
    [34]
    V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci. 286 (2005) 90−100.
    [35]
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60 (1938) 309−319.
    [36]
    Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59 (2004) 171−177.
    [37]
    Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115−124.
    [38]
    D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite, J. Chem. Eng. Data 52 (2007) 1615−1620.
    [39]
    M. Kato, S. Yoshikawa, K. Nakagawa, Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations, J. Mater. Sci. Lett. 21 (2002) 485−487.
    136
    [40]
    A. Iwan, H. Stephenson, W.C. Ketchie, A.A. Lapkin, High temperature sequestration of CO2 using lithium zirconates, Chem. Eng. J. 146 (2009) 249−258.
    [41]
    R. Xiong, J. Ida, Y.S. Lin, Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate, Chem. Eng. Sci. 58 (2003) 4377−4385.
    [42]
    M.J. Venegas, E. Fregoso-Israel, R. Escamilla, H. Pfeiffer, Kinetic and Reaction Mechanism of CO2 sorption on Li4SiO4: Study of the Particle Size Effect, J. Ind. Eng. Chem. 46 (2007) 2407−2412.
    [43]
    J.C. Abanades, D. Alvarez, Conversion Limits in the Reaction of CO2 with Lime, Energy Fuels 17 (2003) 308−315.
    [44]
    D. Alvarez, J.C. Abanades, Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO, Ind. Eng. Chem. Res. 44 (2005) 5608−5615.
    [45]
    D. Alvarez, J.C. Abanades, Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles, Energy Fuels 19 (2005) 270−278.
    [46]
    V. Manovic, E.J. Anthony, Steam Reactivation of Spent CaO-Based Sorbent for Multiple CO2 Capture Cycles, Environ. Sci. Technol. 41 (2007) 1420−1425.
    [47]
    V. Manovic, E.J. Anthony, Parametric Study on the CO Capture Capacity of CaO-Based Sorbents in Looping Cycles, Energy Fuels 22 (2008) 1851−1857.
    [48]
    A. Roesch, E.P. Reddy, P.G. Smirniotis, Parametric Study of Cs/CaO Sorbents with Respect to Simulated Flue Gas at High Temperatures, J. Ind. Eng. Chem. 44 (2005) 6485−6490.
    [49]
    C. Salvador, D. Lu, E.J. Anthony, J.C. Abanades, Enhancement of CaO for CO2 capture in an FBC environment, Chem. Eng. J. 96 (2003) 187−195.
    [50]
    M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, H. Ohya, Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction, Appl Energy 69 (2001) 225−238.
    137
    [51]
    Z.-S. Li, N.-S. Cai, Y.-Y. Huang, H.-J. Han, Synthesis, Experimental Studies, and Analysis of a New Calcium-Based Carbon Dioxide Absorbent, Energy Fuels 19 (2005) 1447−1452.
    [52]
    Z.-S. Li, N.-S. Cai, Y.-Y. Huang, Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based CO2 Sorbent, J. Ind. Eng. Chem. 45 (2006) 1911−1917.
    [53]
    C.S. Martavaltzi, A.A. Lemonidou, Development of new CaO based sorbent materials for CO2 removal at high temperature, Microporous Mesoporous Mater. 110 (2008) 119−127.
    [54]
    C.S. Martavaltzi, A.A. Lemonidou, Parametric Study of the CaO-Ca12Al14O33 Synthesis with Respect to High CO2 Sorption Capacity and Stability on Multicycle Operation, J. Ind. Eng. Chem. 47 (2008) 9537−9543.
    [55]
    S.F. Wu, Q.H. Li, J.N. Kim, K.B. Yi, Properties of a Nano CaO/Al2O3 CO2 Sorbent, J. Ind. Eng. Chem. 47 (2008) 180−184.
    [56]
    H. Lu, E.P. Reddy, P.G. Smimiotis, Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures, J. Ind. Eng. Chem. 45 (2006) 3944−3949.
    [57]
    D.J.L. Hasler, L.K. Doraiswamy, T.D. Wheelock, A Plausible Model for the Sulfidation of a Calcium-Based Core-in-Shell Sorbent, J. Ind. Eng. Chem. 42 (2003) 2644−2653.
    [58]
    H. Gupta, L.-S. Fan, Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas, J. Ind. Eng. Chem. 41 (2002) 4035−4042.
    [59]
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710−712.
    [60]
    J.C. Vartuli, S.S. Shih, C.T. Kresge, Potential applications for M41S type mesoporous molecular sieves, Micropor. Mesopor. Mater. 117 (1998) 13−21.
    138
    [61]
    H.P. Lin, C.Y. Mou, Structural and morphological control of cationic surfactant-templated mesoporous silica, Acc. Chem. Res. 35 (2002) 927−935.
    [62]
    A. Vinu, P. Srinivasu, M. Miyahara, K. Ariga, Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content, J. Phys. Chem. B 110 (2006) 801−806.
    [63]
    C.F. Cheng, H.Y. He, W.Z. Zhou, J. Klinowski, Crystal morphology supports the liquid-crystal formation mechanism for the mesoporous molecular-sieve MCM-41, Chem. Phys. Letters 244 (1995) 117−120.
    [64]
    C.F. Cheng, Z.H. Luan, J. Klinowski, The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41, Langmuir 11 (1995) 2815−2819.
    [65]
    Y. Zhu, L. Zhang, W. Yao, L. Cao, The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol–gel method with TiCl4 as a precursor, Appl. Surf. Sci. 158 (2000) 32-37.
    [66]
    J.C. Yu, J.G. Yu, J.C. Zhao, Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment, Appl. Catal. B: Environ. 36 (2002) 31−43.
    [67]
    X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647−653.
    [68]
    H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, Characterization of Titanium–Silicon Binary Oxide Catalysts Prepared by the Sol–Gel Method and Their Photocatalytic Reactivity for the Liquid–Phase Oxidation of 1–Octanol, J. Phys. Chem. B 102 (1998) 5870–5875.
    [69]
    P. Wu, T. Tatsumi, Postsynthesis, Characterization, and Catalytic Properties in Alkene Epoxidation of Hydrothermally Stable Mesoporous Ti-SBA-15, Chem. Mater. 14 (2002) 1657−1664.
    139
    [70]
    B.L. Newalkar, J. Olanrewaju, S. Komarneni, Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions, Chem. Mater. 13 (2001) 552−557.
    [71]
    H. Chu, Y. Wan, D. Zhao, Synthesis of Ti-containing mesoporous silicates from inorganic titanium sources, Catal. Today 148 (2009) 19−27.
    [72]
    M. Trillas, J. Peral, X. Dom□nech, Redox photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2, Appl. Catal. B-Environ. 5 (1995) 377−387.
    [73]
    M. Harada, H. Einaga, Photochemical deposition of platinum on TiO2 by using poly(vinyl alcohol) as an electron donor and a protecting polymer, Catal. Commun. 5 (2004) 63−67.
    [74]
    M.J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, A. Zecchina, Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties, J. Photochem. Photobiol. A−Chem. 199 (2008) 64−72.
    [75]
    C.C. Su, C.H. Liao, J.D. Wang, C.M. Chiu, B.J. Chen, The adsorption and reactions of methyl iodide on powdered Ag/TiO2, Catal. Today 97 (2004) 71−79.
    [76]
    J.A. Calles, A. Carrero, A.J. Vizca□no, Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming, Microporous Mesoporous Mater. 119 (2009) 200–207.
    [77]
    C. Graf, R. Ohser-Wiedemann, G. Kreisel, Preparation and characterization of doped metal-supported TiO2-layers, J. Photochem. Photobiol. A−Chem. 188 (2007) 226−234.
    [78]
    F. Zhang, J. Chen, X. Zhang, W. Gao, R. Jin, N. Guan, Y. Li, Synthesis of Titania-Supported Platinum Catalyst: The Effect of pH on Morphology Control and Valence State during Photodeposition, Langmuir 20 (2004) 9329−9334.
    [79]
    A.M.T. Silva, B.F. Machado, H.T. Gomes, J.L. Figueiredo, G. Dražić, J.L. Faria, Pt nanoparticles supported over Ce–Ti–O: the solvothermal and photochemical
    140
    approaches for the preparation of catalytic materials, J. Nanopart. Res. 12 (2010) 121−133.
    [80]
    C. Crisafull, S. Scir□, S. Giuffrida, G. Ventimiglia, R. Lo Nigro, An investigation on the use of liquid phase photo-deposition for the preparation of supported Pt catalysts, Appl. Catal. A: Gen. 306 (2006) 51−57.
    [81]
    I. Roslov, T. Boitsova, D. Bartak, Precipitation of gold nanoparticles on the quartz surface modified by titanium (IV) butoxide, J. Nanopart. Res. 12 (2010) 1479−1488.
    [82]
    F. Forouzan, T.C. Richards, A.J. Bard, Photoinduced Reaction at TiO2 Particles. Photodeposition from Ni(II) Solutions with Oxalate, J. Phys. Chem. 100 (1996) 18123−18127.
    [83]
    R. NASEEM, S.S. TAHIR, REMOVAL OF Pb(II) FROM AQUEOUS/ACIDIC SOLUTIONS BY USING BENTONITE AS AN ADSORBENT, Water Res. 35 (2001) 3982−3986.
    [84]
    Y. Ming, C.R. Chenthamarakshan, K. Rajeshwar, Radical-mediated photoreduction of manganese(II) species in UV-irradiated titania suspensions, J. Photochem. Photobiol. A−Chem. 147 (2002) 199−204.
    [85]
    J. M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Adsorption of Organic Acids on TiO2 Nanoparticles: Effects of pH, Nanoparticle Size, and Nanoparticle Aggregation, Langmuir 24 (2008) 6659−6667.
    [86]
    K.S.W. Sing, D.H. Everett, R.A.W Haul, L. Moscou, R.A. Pierotti, J. Rouqu□rol, T. Siemieniewska, REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem. 57 (1985) 603−619.
    [87]
    L.Q. Jing, X.J. Sun, W.M. Cai, Z.L. Xu, Y.G. Du, H.G. Fu, The Preparation and Characterization of Nanoparticle TiO2/Ti Films and their Photocatalytic Activity, J. Phys. Chem. Solids 64 (2003) 615−623.
    141
    [88]
    G. Li, X.S. Zhao, Characterization and Photocatalytic Properties of Titanium-Containing Mesoporous SBA-15, Ind. Eng. Chem. Res. 45 (2006) 3569−3573.
    [89]
    C.H. Huang, K.P. Chang, H.D. Ou, Y.C. Chiang; C.F. Wang, Adsorption of cationic dyes onto mesoporous silica, Microporous Mesoporous Mater., in press.
    [90]
    P. Sangpour, F. Hashemi, A.Z. Moshfegh, Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study, J. Phys. Chem. C 114 (2010) 13955−13961.
    [91]
    H. Courbon, J.M. Herrmann, and P. Pichat, Effect of Platinum Deposits on Oxygen Adsorption and Oxygen Isotope Exchange over Variously Pretreated, Ultraviolet-Illuminated Powder TiO2, J. Phys. Chem. 88 (1984) 5210−5214.
    [92]
    C.T. Yu, C.F. Wang, T.Y. Chen, Y.T. Chang, Synthesis and characterization of radiation sensitive TiO2/monazite photocatalyst, J. Radioanal. Nucl. Chem. 277 (2008) 337−345.
    [93]
    T. Sreethawong, Y. Suzuki, S. Yoshikawa, Platinum-loaded mesoporous titania by single-step sol−gel process with surfactant template: photocatalytic activity for hydrogen evolution, C. R. Chim. 9 (2006) 307−314.
    [94]
    J.M. Coronado, A. Javier Maira, A. Martinez-Arias, J.C. Conesa and J. Soria, EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts, J. Photochem. Photobiol. A: Chem. 150 (2002) 213−221.
    [95]
    J. Xiao, T. Peng, R. Li, Z. Peng and C. Yan, Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles, J. Solid State Chem. 179 (2006) 1161−1170.
    [96]
    R. Lindner, M. Reichling, E. Matthias, H. Johansen, Luminescence and damage thresholds of cerium-doped LaF3 for ns-pulsed laser excitation at 248 nm, Appl. Phys. B 68 (1999) 233−241.
    [97]
    A. J. Wojtowicz, Rare-earth-activated wide bandgap materials for scintillators, Nucl. Instr. Meth. A 486 (2002) 201−207.
    142
    [98]
    B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Photocatalytic mechanism of TiO2−CeO2 films prepared by magnetron sputtering under UV and visible light, Surface Sci. 595 (2005) 203−211.
    [99]
    J.H. de Boer, B.G. Linsen, T.J. Osinga, Studies on pore systems in catalysts: VI. The universal t Curve, J. Catal. 4 (1965) 643−648.
    [100]
    Nicholas H. Florin, Andrew T. Harris, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles, Chem. Eng. Sci. 64 (2009) 187−191.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE