研究生: |
趙威丞 Chao, Wei-Cheng |
---|---|
論文名稱: |
以類神經網路還原重疊關聯成像之頻譜相位資訊 Ptychographic Spectral Phase Retrieval by Neural Networks |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: |
陳明彰
Chen, Ming-Chang 林元堯 Lin, Yuan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 超快光學 、類神經網路 、重疊關聯成像 、超短脈衝量測 、相位還原演算法 、頻率解析光閘 |
外文關鍵詞: | Ultrafast optics, Artificial neural network, Ptychography, Ultrashort pulse measurement, phase retrieval algorithm, frequency-resolved optical gating |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頻率解析光閘法(frequency-resolved optical gating, FROG)是一種廣泛用於超短脈衝雷射的量測方法。實驗上,使用一臂具延遲(delay)的干涉儀進行自我干涉,記錄延遲長度對應的頻譜構成的二維圖像,被稱為FROG trace。傳統上會使用迭代演算法(Iterative algorithm),花費數秒以還原待測脈衝的資訊。在量測超短脈衝的超寬頻譜時,使用FROG會遭遇晶體的頻率響應問題,造成FROG trace在頻率軸上被裁切。以往這種被裁切的FROG trace只有極少數迭代演算法才能完成相位還原,並且有所限制。
本研究建立了一個基於卷積神經網路(Convolutional Neural Networks, CNN)的演算法,能夠以毫秒級的計算時間得到足夠可靠的脈衝資訊。亦能成功達成裁切FROG trace的相位還原,並得到與迭代演算法相比更好的統計結果。因此,此方法對於超寬光譜之脈衝的即時量測與監控提供了基礎。
Frequency-resolved optical gating (FROG) is a common mothed for retrieving the complex field of ultrashort pulse from experimentally taken spectrogram (i.e. FROG trace). Traditionally, a FROG trace is processed by some iterative algorithm(s), and takes several seconds to arrive at the solution. FROG trace would be spectrally truncated when the nonlinear crystal failed to provide sufficient phase-matching bandwidth particularly in supercontinuum pulse measurement. Only a few algorithms can work with truncated FROG trace, and is somehow limited.
In this work, we develop a convolution neural network based mothed to retrieve spectral phase from spectrally truncated FROG traces in only few milliseconds, while the pulse reconstruction remains acceptable. This mothed is promising for real-time characterizations of supercontinuum pulses.
[1] K. W. DeLong, R. Trebino, J. Hunter, W. E. White, “Frequency-resolved optical gating using second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
[2] Kane, Daniel J., et al. "Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot." JOSA B 14.4 (1997): 935-943.
[3] P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3, 1320–1330 (2016).
[4] Rodenburg JM, Faulkner HM (15 November 2004). "A phase retrieval algorithm for shifting illumination". Applied Physics Letters. 85 (20): 4795–4797. Bibcode:2004ApPhL..85.4795R
[5] McCulloch, Warren S.; Pitts, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics. 1943-12-01, 5 (4): 115–133
[6] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974
[7] Hawkins, Douglas M. "The problem of overfitting." Journal of chemical information and computer sciences 44.1 (2004): 1-12.
[8] Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, vol. 79 no. 8 pp. 2554–2558, April 1982.
[9] Broomhead, D. S.; Lowe, David (1988). "Multivariable functional interpolation and adaptive networks". Complex Systems. 2: 321–355.
[10] Huber, Peter J. (1964). "Robust Estimation of a Location Parameter". Annals of Statistics. 53 (1): 73–101.
[11] Nebauer, C.: Evaluation of convolutional neural networks for visual recognition.
Neural Networks, IEEE Transactions on 9(4), 685–696 (1998)
[12] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse rectifier neural networks." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 201
[13] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." Proc. icml. Vol. 30. No. 1. 2013.
[14] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).
[15] Hinton, Geoffrey; Deng, Li; Deng, Li; Yu, Dong; Dahl, George; Mohamed, Abdel-rahman; Jaitly, Navdeep; Senior, Andrew; Vanhoucke, Vincent; Nguyen, Patrick; Sainath, Tara; Kingsbury, Brian (2012). "Deep Neural Networks for Acoustic Modeling in Speech Recognition". IEEE Signal Processing Magazine. 29 (6): 82–97.
[16] Léon Bottou: Online Algorithms and Stochastic Approximations, Online Learning and Neural Networks, Edited by David Saad, Cambridge University Press, Cambridge, UK, 1998.
[17] J Duchi, E Hazan, Y Singer; Adaptive subgradient methods for online learning and stochastic optimization., Journal of machine learning research, 2011
[18] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks : the official journal of the International Neural Network Society, 12(1):145–151, 1999
[19] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv:1412.6980 (2015).
[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778
[21] T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, and M. Segev, “Deep learning reconstruction of ultrashort pulses,” Optica 5, 666–673 (2018).