簡易檢索 / 詳目顯示

研究生: 簡立維
Jian, Li-Wei
論文名稱: 核電廠放射性廢棄物中Tc-99、I-129核種分析技術之精進
The enhancement of analytical technology for Tc-99、I-129 in the nuclear power plant radwastes
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 黃素珍
李振弘
王竹方
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 71
中文關鍵詞: 比例因數
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了針對放射性廢料工程障壁的設計,放射性強度的測量是非常重要的。長半衰期元素例如Tc-99(半衰期為21.3萬年)其具有非常液溶於水的特性及I-129(半衰期為1600萬年)其具有非常易揮發的特性,上述兩者對於環境及人體均扮演著非常重要的角色。一般而言再測量放性活度的方法有:測量核種衰變所釋放出來的能量或者是經由美國電力研究所所開發出來的比例因數的方法來進行量測。然而,上述的兩種方法均不適用於長半衰期核種的量測當中。在本研究當中,鹼消化法被選用為針對碘的樣品前處理步驟,而TEVA管柱則被選用為針對鎝的樣品前處理步驟,並將上述的兩種樣品前處理步驟搭配ICP-MS的偵測來克服這些問題。
    整體的流程來說,碘及鎝的樣品前處理步驟均擁有良好的精密度及準確度,且ICP-MS的方法偵測極限(碘的為3 ng/L、鎝的為0.02 ng/L)均優於傳統的液態閃爍偵檢器(碘的為700 ng/L、鎝的為10 ng/L)。在本研究當中實際樣品所偵測到的放射性強度值也均小於利用比例因數所得到的值,也證明了本方法可以有效改善利用傳統方法測量所產生的問題。


    For the design of radwaste disposal repository, the measurement of radioactivity in it is very important. Long half-life nuclides such as Tc-99 (t1/2=2.13x105y) which is very soluble and I-129 (t1/2=1.6x107y) which is easy to volatile play important roles for the environment and human. In general, the radioactivity is obtained from the energy of radiation emitted from the nuclides or from the “Scaling factor” method developed by Electric Power Research Institute (EPRI) of America. However, both of the methods are difficult to measure the radioactivity for long half-life nuclides. In this study, alkaline digestion used as the method of sample pretreatment for iodine and the TEVA extraction chromatographic resin for technetium are combined with ICP-MS to overcome these difficulties. The overall sample pre-treatment steps of both iodine and technetium have good precision and accuracy and the method detection limits of iodine and technetium by ICP-MS are 3 ng/L and 0.02 ng/L that are extremely lower than that by the traditional liquid scintillation counter (10 ng/L for 99Tc and 700 ng/L for 129I). The radioactivity of the real samples obtained by this method are all greatly lower than that obtained by the scaling factor. It proves that this method can improve the disadvantages of traditional methods.

    Contents 摘要...II ABSTRACT...III 謝誌...IV CONTENTS...V TABLE INDEX...VIII FIGURE INDEX...X CHAPTER 1 INTRODUCTION...1 1.1 General overview...1 1.2 Purpose of this study...3 CHAPTER 2 LITERATURE REVIEW...4 2.1 Characterization and regulations of radioactive elements...4 2.1.1 I-129...4 2.1.2 Tc-99...5 2.2 Pretreatment of iodine from samples...7 2.2.1 Pyrohydrolysis...7 2.2.2 Alkaline digestion...9 2.3 Pretreatment of technetium from samples...13 2.3.1 Introduction of TEVA...14 2.3.2 Application...16 2.4 Applications of ICP-MS...19 2.5 Scaling factor...21 CHAPTER 3 EXPERIMENTAL AND METHODS...23 3.1 Apparatus and conditions...23 3.1.1 Inductively coupled plasma...24 3.1.2 Quadrupole Mass Spectrometer...25 3.2 Reagents and materials...26 3.2.1 Iodine...26 3.2.2 Technetium...27 3.3 Experimental procedure...28 3.3.1 Iodine...28 3.3.2 Technetium...35 3.3.3 Real sample...37 CHAPTER 4 RESULT AND DISCUSSION...38 4.1 The establishment of Iodine analysis technique...38 4.1.1 External calibration curve, Correlation coefficient(R2), Detection limit(DL)...38 4.1.2 Optimization of Pyrohydrolysis analysis technique...40 4.1.3 Optimization of Alkline digestion analysis technique...43 4.1.4 Xe+ interference...45 4.1.5 Spike test, Precision and Accuracy...46 4.2 The establishment of Technetium analysis technique...48 4.2.1 External calibration curve, correlation coefficient, detection limit...48 4.2.2 Optimization Analysis conditions with TEVA...50 4.2.3 Vacuum pressure...52 4.2.4 Precision and accuracy...54 4.3 Real sample analysis...55 4.3.1 Iodine...56 4.3.2 Technetium...58 4.3.3 Comparison with scaling factor method and liquid scintillation counter...60 CHAPTER 5 CONCLUSIONS AND FUTURE WORK...63 5.1 Conclusions...63 5.2 Future work...64 Reference...65 Table Index Table 1 Basic information of 99Tc and 129I...2 Table 2 Three different methods of sample pretreatment with TEVA in Jose Luis Mas et al. 2004...18 Table 4.1 The recovery of SRM2711 with V2O5 and without V2O5 (n=3)...41 Table 4.2 The recovery of SRM2711 with different heating time (n=3), SRM2711 reference value of iodine is 3 ug/g...42 Table 4.3 Recovery of SRM2709 and SRM2711 for different formula (n=3), reference value of SRM2709 and SRM2711 are 5 ug/g and 3 ug/g...44 Table 4.4 Na127I-spiked and Na129I-spiked cement standard recovery test (n=3)...47 Table 4.5 99Tc-spiked cement standard recovery (n=3). (A) part prior wash the column with 50ml of 1M HNO3 solution and then elute the column with 5ml of 14.4M HNO3 solution. (B) part directly elute the column with 5ml of 14.4M HNO3 solution...51 Table 4.6 99Tc-spiked cement standard recovery in different vacuum pressure (n=3)...53 Table 4.7 99Tc-spiked cement standard recovery (n=3)...54 Table 4.8 The data of iodine in the real samples. Gray words mean that the concentration of iodine is <LOD and we use the detection limit to represent it (n=3)...57 Table 4.9 The data of technetium in the real samples. Gray words mean that the concentration of technetium is <LOD and we use the detection limit to represent it (n=3)...59 Table 4.10 The radioactivity data of scaling factor and ICP-MS in the real samples. Gray words mean that the value is <LOD and we use the detection limit to represent it...62 Table 4.11 The detection limit between different apparatus...62 Figure Index Figure 2.1 The decay scheme of 99Tc...6 Figure 2.2 Combustion apparatus for halogen separation from solid samples. (Bernhard Schnetger et al. 1996)...8 Figure 2.3 Evaporation of iodine from soil sample at different temperatures. (Yasuyuki Muramatsu et al. 2008)...9 Figure 2.4 UV–vis absorbance spectra of potassium iodide solution after oxidation (a) with H2O2 at pH 1, (b) with H2O2 at pH 2.2 (Helen et al. 2008)...11 Figure 2.5 Quaternary ammonium salt (Horwitz et al. 1995)...15 Figure 2.6 TEVA resin elution profiles in HNO3 and HCl solutions. (TRISKEN,TEVA resin product sheet)...16 Figure 3.1 A photograph of Agilent 7500a ICP-MS...23 Figure 3.2 Ion source and interface in ICP MS...25 Figure 3.3 Schema of the ICP-MS...26 Figure 3.4 High-temperature pyrolysis with air-extracting filtration bottle...30 Figure 3.5 The flow chart of high-temperature pyrolysis procedure...31 Figure 3.6 The flow chart of alkaline digestion for SRM standard and the processes of simulated real samples analysis are marked with thick lines...32 Figure 3.7 The appearance of high pressure digestion system...34 Figure 3.8 The flow chart of Technetium analysis...36 Figure 3.9 Increase the flow rate via vacuum pump...37 Figure 4.1 External calibration curve of 127I and 129I, the detection limit of iodine is around 3ppt...39 Figure 4.2 External calibration curve of 99Ru and 99Tc and the detection limit of 99Ru and 99Tc are around 0.3 and 0.02 ppt...49

    邱鍠盛助理研究員, 低放射性廢棄物分類之核種與活度量測及認證制度之研究,行政院原子能委員會放射性物料管理局 委託研究計畫研究報告,2008

    Amrani N., Boucenna A.,(2007), Evaluation of technetium transmutation in the experimental fast reactor ‘‘JOYO’’, Annals of Nuclear Energy, 34, 703–706.

    Andrey D., Zbinden P., Wah M. K.and Lee W.,(2001), A routine quality control
    method for the determination of iodine in human and pet food by ICP-MS, At.
    Spectrosc., 22, 299–305.

    Baumann H.,(1990), Rapid and sensitive determination of iodine in fresh milk and
    milk powder by inductively coupled plasma - mass-spectrometry (icp-ms),
    Fresenius’ J. Anal. Chem, 338, 809-812.

    Beals D.M.,(1996), Determination of technetium-99 in aqueous samples by isotope
    dilution inductively coupled plasma-mass spectrometry, J. Radioanal. Nucl. Chem.
    204, 253.

    Beasley, T. M., and Lorz, H. V.,(1986), A review of the biological and geochemical behavior of technetium in the marine-environment, J. Environ. Radioact., 3,1-22.

    Bernhard Schnetger and Yasujuki Muramatsub, (1996), Determination of halogens, with special reference to iodine, in geological and biological samples using
    pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement, Analyst, 121, 1627-1631.

    Bergquist B. A., Marchetti A. A., Martinelli R. E., McAninch J. E., Nimz G.J., Proctor I. D., Southon J. R. and Vogel J. S.,(2000), Technetium measurements by accelerator mass spectrometry at LLNL, Nucl. Instrum. Meth. Phys. Res., Sect. B, 172, 328-332.

    Brauer, FP., Strebin JR., R.S., (1982), In environmental migration of longlived radionuclides (IAEA-SM-257), IAEA, Vienna, 465–480.66

    Brookins, D.G., (1987), Eh±pH Diagrams for Geochemistry, Springer-Verlag, Berlin, pp. 97-99.

    Chao J. H., Tseng C. L., Lee C. J., (2002), Sequential extraction separation for determination of technetium-99 in radwastes by ICP-MS, Journal of Radioanalytical and Nuclear Chemistry, 251, 105–112.

    Chao J.H., Tseng C.L., Lee C.J., Hsia C.C., Teng S.P., (1999) , Analysis of I-129 in radwastes by neutron activation, Applied Radiation and Isotopes , 51, 137-143.

    Dahlgaard H.,(1994), Sources of 137Cs, 90Sr and 99Tc in the East Greenland Current, J. Environ. Radioactivity, 25, 37-55.

    Dixon P., Curtis D. B., Musgrave J., Roensch F., Roach J. and Rokop D., (1997), Analysis of naturally produced technetium and plutonium in geologic materials, Anal. Chem., 69, 1692-1699.

    Fecher P. A., Goldmann I.and Nagengast A., (1998), Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction,
    J. Anal. At. Spectrom., 13, 977–982.

    Fowler, S. W., Aston, S. R., Benayoun, G., and Parsi, P.,(1983), Bioavailability of technetium from artificially labeled northeast atlantic deep-sea sediments, Mar. Environ. Res., 8, 87-100.

    Garland, T.R., Cataldo, D.A., McFadden, K.M., Schreckhise, R.G., Wildung, R.E., (1983), Comparative behavior of 90Tc, 129I, 127I and 137Cs in the environment adjacent to a fuels reprocessing facility, Health Phys., 44, 658-662.

    Gelinas Y., Krushevska A. and Barnes R. M.,(1998), Determination of total iodine in nutritional and biological samples by ICP-MS following their combustion within an
    oxygen stream, Anal. Chem., 70, 1021–1025.

    Handel, J., Oliver, E., Jakob, D., Johanson, K.J., Schuller, P., (1993), Biospheric 129I concentration in the pre-nuclear and nuclear age, Health Physics, 65, 265–271.

    Handl, J.,(1996), Concentrations of 129I in the biosphere, Radiochim. Acta. 72, 33–38.

    Helen J. Reid∗, Abdul A. Bashammakh, Phillip S. Goodall , Mark R. Landon , Ciaran Connor , Barry L. Sharp,(2008), Determination of iodine and molybdenum in milk by quadrupole ICP-MS, Talanta, 75, 189–197.

    Heumann, K. G., and Weiss, H., Fresenius' Z, (1986), Chem. Mass-spectrometric iodine trace determinations in geochemical standard reference materials and in meteorites, Anal., 323, 852-858.

    Horwitz E. P., Dietz M., Chiarizia R., Diamond H., Maxwell S., and Nelson M.,(1995), Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion-exchanger - application to the characterization of high-level nuclear waste solutions, Analytica Chimica Acta, 310, 63.

    Izmer A. V., Boulyga S. F., Becker J. S.,(2003), Determination of 129I/127I isotope ratios in liquid solutions and environmental soil samples by ICP-MS with hexapole collision cell, J. Anal. At. Spectrom., 18, 1339–1345.

    Jan L. M. de Boer, Peter de Joode and Rob Ritsema, (1998), Direct inductively coupled plasma mass spectrometric determination of cadmium in urine with special attention to matrix effect correction, J. Anal. At. Spectrom., 13, 971-975.

    Jose Luis Mas, Keiko Tagami , Shigeo Uchida,(2004), Method for the detection of Tc in seaweed samples coupling the use of Re as a chemical tracer and isotope dilution inductively coupled plasma mass spectrometry, Analytica Chimica Acta,,
    509, 83–88.

    Kazakov V. S., Demidchik E. P. and Astakhova L. N.,(1992), Thyroid-cancer after chernobyl, Nature, 359, 21.
    Kerl W., Becker J. S., Dietze H. J. and Dannecker W.,(1996), Determination of iodine using a special sample introduction system coupled to a double-focusing
    sector field inductively coupled plasma mass spectrometer, J. Anal. At. Spectrom., 11(9), 723-726.

    Knapp G., Maichin B., Fecher P., Hasse S. and Schramel P.,(1998), Iodine determination in biological materials - Options for sample preparation and final determination, Fresenius J. Anal. Chem., 362, 508-513. 68

    Larsen E. H. and Ludwigsen M. B.,(1997), Determination of iodine in food-related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 12, 435–439.

    McCartney M., Rajendran K., Olive V., Busby R., McDonald P., (1999), Development of a novel method for the determination of Tc-99 in environmental samples by ICP-MS, J. Anal. Atom. Spectrom., 14, 1849-1852.

    Michael Fern, Anil Thakkar, and Lawrence Jassin,(2005), Recent Developments inthe Analysis of Techetium-99, Journal of Nuclear and Radiochemical Sciences, Vol. 6, No.3, 223-225.

    Miranda J. Keith-Roach,* Stefan Stürup, Deborah H., Oughton and Henning Dahlgaard., (2002), Comparison of two ICP-MS set-ups for measuring 99Tc in large volume water samples, Analyst, 127, 70–75.

    Moran, J.E., Oktay, S., Santschi, P.H., Schink, D.R., (1999), Atmospheric disposal of 129I from nuclear reprocessing facilities, Environmental Science and Technolog 33, 2536–2542.

    Muramatsu, Y., Yoshida, S., (1995), Determination of I-129 and I-127 in environmental samples by neutron activation analysis (NAA) and inductively coupled mass spectrometry (ICP-MS), Journal of Radioanalytical Nuclear Chemistry., 197, 149–159

    Muramatsu, Y., Ohmomo, Y., (1986), Iodine-129 and iodine-127 in environmental samples collected from Tokaimura/Ibaraki, Japan, Science of the Total Environment, 48, 33–43.

    Radlinger G.and Heumann K. G.,(1998), Iodine determination in food samples using inductively coupled plasma isotope dilution mass spectrometry, Anal. Chem., 70, 2221–2224.

    Radinger G.and Heumann K. G.,(2000), Transformation of iodide in natural and wastewater systems by fixation on humic substances, Environ. Sci. Technol., 34, 3932.
    69

    Sarata Kumar Sahoo1*, Yasuyuki Muramatsu, Satoshi Yoshida, Hiroyuki Matsuzaki And Werner Rühm, (2009), Determination of 129i and 127i concentration in soil samplesfrom the chernobyl 30-km zone by ams and icp-ms, j. radiat. res., 50,
    325–332.

    Schnetger B., Muramatsu Y. and Yoshida S.,(1998), Iodine (and other halogens) in twenty six geological reference materials by ICP-MS and ion chromatography., Geostand. Newsl., 22, 181–186.

    Schnetger B.and Muramatsu Y.,(1996), Determination of halogens, with special reference to, iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement, Analyst, 121, 1627–1631.

    Seki R., Kondo M., (2005), An improved method for technetium determination in environmental samples, Journal of Radioanalytical and Nuclear Chemistry, 263, No.2, 393-398

    Souza G. B., Carrilho E. N. V. M., Oliveira C. V., Nogueira A. R. A. and Nobrega J. A.,(2002), Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry, Spectrochim. Acta, Part B, 57, 2195–2201.

    Sturup S., Buchert A.,(1996), Direct determination of copper and iodine in milk and milk powder in alkaline solution by flow injection inductively coupled plasma mass
    spectrometry, Fresenius’ J. Anal. Chem., 354, 323-326.

    Tagami K., Uchida S., Hamilton T., Robison W.,(2000), Measurement of technetium-99 in Marshall Islands soil samples by ICP-MS, Applied Radiation and Isotopes,53, 75-79.

    Takaku, Y., Shimamura, T., Masuda, K., and Igarashi, Y., (1995), Iodine determination in natural and tap water using inductively-coupled plasma-mass
    spectrometry, Anal. Sci., 11, 823-827.

    Tagami K. and Uchida S.,(1993a), Investigation of pre-treatment of soil for Tc analysis-Loss of Tc by incineration in relation to aging effect, Radioisotopes
    (abstr. in English), 42, 89-70

    Till, J.E., Hoffman, F.O., Dunning Jr, D.E., (1979), A new look at 99Tc releases to the atmosphere, Health Phys, 36, 21-30.

    Till J. E., Desmet G. and Myttenaere C. (eds),(1986), Technetium in the environment, Elsevier applied science, p. 1.

    TRISKEN,TEVA resin product sheet.

    Uchida S., Tagami K., (1997), Improvement of Tc separation procedure using a chromatographic resin for direct measurement by ICP-MS, Anal. Chim. Acta, 357,1-3.

    Uchida S., Tagami K., RuÈhm W., Steiner M., Wirth E.,(2000), Separation of Tc-99 in soil and plant samples collected around the Chernobyl reactor using a Tc-selective
    chromatographic resin and determination of the nuclide by ICP-MS, Applied Radiation and Isotopes, 53,69-73.

    Uchida S., Tagami K., (1997), Improvement of Tc separation procedure using a chromatographic resin for direct measurement by ICP-MS, Analytica Chimica Acta, 357,1-3.

    UNSCEAR, (2000), UNSCEAR-2000 Report, United Nations, vol. 1, Annex A (dose assessment methodologies), V. Globally Dispersed Radionuclides, C. Iodine-129, pp.53–55.

    Vanhoe H., Vanallemeersch F., Versieck J. and Dams R.,(1993), Effect of solvent type on the determination of total iodine in milk powder and human serum by
    inductively-coupled plasma-mass spectrometry, Analyst, 118, 1015–1019.

    Verrezen F., Hurtgen C.. (2002), The measurement of technetium-99 and iodine-129 in waste water from pressurized nuclear-power reactors, International Journal of
    Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 43, 61-68.

    Wilkins, B.T., Stewart, S.P., (1982), A sensitive method for the determination of iodine-129 and iodine-127 in environmental samples, Journal of Radioanalytical Nuclear Chemistry 83, 353–361. 71

    Yasuyuki Muramatsu, Yukari Takada, Hiroyuki Matsuzaki, Satoshi Yoshida,(2008), AMS analysis of 129I in Japanese soil samples collected from background areas far
    from nuclear facilities, Quaternary Geochronology, 3, 291–297.

    Yang J.S.,(1991). High rhenium enrichment in brown algae: a biological sink of rhenium in the sea?, Hydrobiologia, 211, 165-170.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE