研究生: |
黃煒能 |
---|---|
論文名稱: |
含分離葉片離心式渦輪之整合性刀具路徑規劃架構 Integrated Tool Path Planning Framework for Centrifugal Impeller with Split Blades |
指導教授: | 瞿志行 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 五軸加工 、渦輪 、刀具路徑 、刀具軸向 、平滑化 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
渦輪葉片為航太、汽車與冷凍空調業的關鍵性零組件,其設計與製造能力代表整體的工業技術水準,先進國家在此一領域上均投入大量研究資源。渦輪葉片的開發屬於高度分工的產業,其外型設計涉及尖端的流體力學分析,而葉片製造則由專業的加工廠擔任,需要專精的三維幾何模擬與切削技術。由於幾何形狀複雜,五軸切削是比較適合的葉片製造方式,其中最困難的工作為刀具運動的路徑規劃。雖已有文獻探討基本型式之渦輪相關製程以及各項議題,但是對於含分離葉片離心式渦輪之整合性加工規劃技術尚無人討論。本研究將針對含分離葉片之離心式渦輪發展五軸加工規劃法則,主要貢獻在於「側銑加工刀具路徑線性插補法則」、「平滑化刀具軸向演算法架構」以及「含分離葉片離心式渦輪之五軸路徑規劃架構」三項,最後並實際利用五軸工具機切削驗證結果。文中提供一套有效的規劃法則,幫助含分離葉片之離心式渦輪進行製程規劃,期能提高加工效率以及切削精度。
參考文獻
1 G.B. Vickers and K.W. Guan (1989), “Ball-Mills Versus End-Mills for Curved Surface Machining,” ASME Journal of Engineering for Industry, Vol. 111, pp. 22-26.
2 陳文翔 (2000),五軸加工規劃之整合研究,博士論文,台灣大學機械工程學研究所。
3 莊禮彰 (2003),離心式壓縮機葉輪五軸加工規劃,博士論文,台灣大學機械工程學研究所。
4 張敏宏 (1998),直紋曲面側銑研究,碩士論文,台灣大學機械工程學研究所。
5 K. Suresh and D.C.H. Yang (1994), “Constant Scallop-height Machining of Free-form Surfaces,” Transactions of the ASME Journal of Engineering for Industry, Vol. 116, pp. 253-259.
6 R.S. Lin and Y. Koren (1996), “Efficient Tool-Path Planning for Machining Free-Form Surfaces,” Transactions of the ASME Journal of Engineering for Industry, Vol. 118, pp. 20-28.
7 J.-J. Chuang and C.H. Yang (2004), “A Boundary-Blending Method for the Parametization of 2D Surfaces With Highly Irregular Boundaries,” Journal of Mechanical Design, Vol. 126, pp. 327-335.
8 T.H. Oulee, C.H. Yang, and J.-J. Chuang (2004), “Boundary Conformed Toolpath Generation via Laplace Based Parametric Redistribuation Method,” Journal of Manufacturing Science and Engineering, Vol. 126, pp. 345-354.
9 S. Ding, M.A. Mannan, A.N. Poo, D.C.H. Yang, and Z. Han (2003), “Adaptive Iso-Planar Tool Path Generation for Machining of Free-From Surfaces,” Computer-Aided Design, Vol. 35, pp. 141-153.
10 S.C. Park and B.K. Choi (2000), “Tool-Path Planning for Direction-Parallel Area Milling,” Computer-Aided Design, Vol. 32, pp. 17-25.
11 H. Henning (1975), Fünfachsiges NC-Fräsen Gekrümmter Flächen, Ph.D. Dissertation, U. Stuttgart, Germany.
12 J.C.J. Chiou (2004), “Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach,” Computer-Aided Design, Vol. 36, pp. 967-974.
13 J.T. Chen and C.H. Chu (2004), “Automatic Avoidance of Local Tool Interference in Five-Axis Flank Milling,” The 21st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Kaohsiung, Taiwan.
14 C. Lartigue, E. Duc, and A. Affouard (2003), “Tool Path Deformation in 5-Axis Flank Milling using Envelop Surface,” Computer-Aided Design, Vol. 35, pp. 375-382.
15 M.C. Ho, Y.R. Hwang, and C.H. Hu (2003), “Five-Axis Tool Orientation Smoothing using Quaternion Interpolation Algorithm,” International Journal of Machine Tools & Manufacture, Vol. 43, pp. 1259-1267.
16 K. Taejung and S.E. Sarma (2002), “Toolpath Generation along Direction of Maximum Kinematic Performance; a First Cut at Machine-Optimal Paths,” Computer-Aided Design, Vol. 34, pp. 453-468.
17 E.L.J. Bohez, S.D.R. Senadhera, K. Pole, J.R. Duflou, and T. Tar (1997), “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436.
18 C. Menzel, S. Bedi, and S. Mann (2004), “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.
19 S. Bedi, S. Mann, and C. Menzel (2003), “Flank Milling with Flat End Milling Cutters,” Computer-Aided Design, Vol. 35, pp. 293-300.
20 X.W. Liu (1995), “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 87-94.
21 C.F. You and C.H. Chu (1996), “Automatic Correction of Tool Interference in Five-Axis NC Machining of Multiple Surfaces,” Journal of the Chinese Society of Mechanical Engineers, Vol. 17, pp. 435-442.
22 C.F. You and C.H. Chu (1997), “Tool-Path Verification in Five-Axis Machining of Sculptured Surface,” The International Journal of Advanced Manufacturing Technology, Vol. 13, pp. 248-255.
23 D.M. Tsay and M.J. Her (2001), “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738.
24 D.M. Tsay, H.C. Chen, and M.J. Her (2002), “A Study on Five-Axis Flank Machining of Centrifugal Compressor Impellers,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 177-181.
25 C.H. Chu and J.T. Chen (2006), “Automatic Tool Path Generation for 5-Axis Flank Milling Based on Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713.
26 K. Erkorkmaz and Y. Altintas (2001), “High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation,” International Journal of Machine tools & Manufacture, Vol. 41, pp. 1323-1345.
27 J.-J. Chou and D. Yan (1991), “Command Generation for Three-Axis CNC Machining,” ASME Journal of Engineering for Industry, Vol. 113, pp. 305-310.
28 S. Bedi, I. Ali, and N. Quan (1993), “Advanced Interpolation Techniques for CNC Machines,” ASME Journal of Engineering Industry, Vol. 115, pp. 329-336.
29 M. Shpitalni, Y. Koren, and C.C. Lo (1994), “Real-Time Curve Interpolators,” Computer-Aided Design, Vol. 26, No. 11, pp. 832-838.
30 F.C. Wang and P.K. Wright (1998), “Open Architecture Controllers for Machine Tools. Part 2: A Real Time Quintic Interpolator,” ASME Journal Manufacture Science and Engineering, Vol. 120, No. 2, pp. 425-432.
31 S.S. Yeh and P.L. Hsu (1999), “The Speed-Controlled Interpolator for Machining Parametric Curves,” Computer-Aided Design, Vol. 31, pp. 349-357.
32 T. Yong and R. Narayanaswami (2003), “A Parametric Interpolator with Confined Chord Errors, Acceleration and Deceleration for NC Machining,” Computer -Aided Design, Vol. 35, pp. 1249-1259.
33 M. Matthias, E. Gabor, and X. Paul (2004), “High Accuracy Spline Interpolation for 5-Axis Machining,” Computer-Aided Design, Vol. 36, pp. 1379-1393.
34 H.Y. Xu (2003), “Linear and Angular Feedrate Interpolation for Planar Implicit Curves,” Computer-Aided Design, Vol. 35, pp. 301-317.
35 K. Weinert, S. Du, P. Damm, and M. Stautner (2004), “Swept Volume Generation for the Simulation of Machining Processes,” International Journal of Machine tools & Manufacture, Vol. 44, pp. 617-628.
36 C. Li, S. Mann, and S. Bed (2005), “Error Measurements for Flank Milling,” Computer-Aided Design, Vol. 37, No. 14, pp. 1459-1468.
37 D.C.H. Yang, J.-J. Chuang and T.H. OuLee (2003), “Boundary-Conformed Toolpath Generation for Trimmed Free-From Surfaces,” Computer-Aided Design, Vol. 35, pp. 127-139.
38 J.-J. Chuang (2001), Boundary Conformed Toolpath Generation for Trimmed Free-From Surfaces, PhD Dissertation, UCLA.
39 K. Suresh and D. Yang (1994), “Constant Scallop-Height Machining for Free-Form Surfaces,” ASME Journal of Engineering for Industry, Vol. 116, pp. 253-259.
40 吳仲傑 (2005),應用幾何分解於自由曲面加工之最佳化程序規劃,碩士論文, 清華大學工業工程與工程管理研究所。
41 K. Lee (1999), Principle of CAA\CAM\CAE Systems, Addison Wesley Longman.
42 Y. Cai, G. Xi, and S. Wan (2003), “Efficient Tool Path Planning for Five-Axis Surface Machining with A Drum-Taper Cutter,” International Journal of Production Research, Vol. 41, No. 15, pp. 3631-3644.