研究生: |
楊凱鈞 Yang, Kai-Chun |
---|---|
論文名稱: |
高容量乾式貯存系統之等效熱阻與靈敏度分析以及熱傳改善研究 The Study of Effective Thermal Resistance, Its Sensitivity Analysis, and Heat Transfer Improvements in High-Capacity Dry-Storage System |
指導教授: |
施純寬
Shih, Chun-Kuan 王仲容 Wang, Jong-Rong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 計算流體力學 、FLUENT 、高容量乾式貯存系統 、混凝土護箱模式 、被動式移熱 |
外文關鍵詞: | computational fluid dynamic, FLUENT, high capacity dry storage system, vertical concrete cask mode, passive heat removal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對核能研究所開發之高容量乾式貯存系統(HCDSS,High Capacity Dry Storage System)進行三維、穩態之熱傳分析,首先完成所需材料的熱傳導度之靈敏度分析,以解析的方式分析高容量乾式貯存系統中各主要元件之熱阻值,發現乾式貯存系統於傳送護箱模式下之主要熱阻為燃料組件套筒集成、支撐鋼架、密封鋼筒與傳送護箱間之空氣間縫以及中子屏蔽層部位,於混凝土護箱模式下之主要熱阻為燃料組件套筒集成、支撐鋼架、空氣流道以及混凝土護箱與外加屏蔽間之空氣間縫。此研究可作為乾貯系統熱傳改善與操作人員的參考與判斷。接著使用計算流體力學軟體FLUENT 6.12.0版本進行熱傳改良之設計分析,結果顯示對空氣流道提高其放射率為0.8(原始設計為0.36)可使密封鋼筒內元件最高溫度下降5°C至6°C。且本研究亦對混凝土護箱與外加屏蔽結構間之間縫將其上下蓋開孔與環境相通之改善,以增加其自然對流效應之被動式移熱效果,此設計能使密封鋼筒外部溫度下降9°C以上。將空氣流道增加放射率為0.8,並與增加外加屏蔽被動式移熱效果互相結合後,其結果顯示可提高密封鋼筒內部與法規最高溫度限值5 oC至6oC的餘裕,亦可改善於襯墊與混凝土護箱因增加放射率造成溫度增加的問題,使得與原始設計溫度差異不大。乾貯系統各元件最高溫度的降低,對於發展更高容量的乾貯系統是有幫助的,且當系統發生事故問題時,可延長元件失效前的升溫時間而使可進行處理之作業時間增長。
This thesis investigated three-dimensional steady state thermal analysis of the High Capacity Dry Storage System (HCDSS) developed by INER. As our first step, we looked into the sensitivity analysis of thermal conductivities of various materials used in HCDSS. We determined the effective thermal resistances for main components in the system analytically. During the transfer cask mode (TFR), the major contributors of thermal resistances are from sleeves group, supporter, the air gap between transportable Storage Canister (TSC) and transfer cask, and neutron shield. For vertical concrete cask mode (VCC), the additional thermal resistances are air channel, and air gap between the concrete cask and add-on shield. Based on such studies, CFD code such as FLUENT 6.12.0 was then adopted for design analysis on heat transfer improvements. The increase of air channel emissivity (from 0.36 to 0.8) could effectively reduce the maximum temperature bye 5 to 6°C inside the canister. We have also proposed to extend the air gap between the concrete cask and add-on shield through the lids at the top and the bottom. This design change enhances the passive heat removal in natural convection, and a drop of 9°C is observed for the canister outer wall temperature. It is important to reduce the maximum temperatures in the system in order to ensure the safety of the system and ample time of operation before any material failure takes place.
1. U.S. NRC, “Packaging and Transportation of Radioactive Material,” 10 CFR Part 71, April
1996.
2. U.S. NRC, “Standard Review Plan for Dry Cask Storage Systems”, NUREG- 1536,
January 1997.
3. F. Kreith, “Principles of Heat Transfer”, 2nd Edition, International Textbook Company,
Scranton, PA, 1965.
4. U.S. Nuclear Regulatory Commission, “Cladding Considerations for Transportation and
Storage of Spent Fuel”, ISG-11, Rev. 3.
4. A.B. Johnson and E.R. Gilbert, “Technical Basis for Storage of Zircaloy-Clad Fuel in Inert
Gases”, PNL-4835, 1985.
5. The American Society of Mechanical Engineers, “ASME Boiler and Pressure Vessel Code,
Section II, Part D- Properties”, 1995 Edition with 1995 Addenda.
6. The American Society of Mechanical Engineers, “ASME Boiler and Pressure Vessel Code,
Code Cases- Boilers and Pressure Vessels”, Code Case N-71-17, 1996.
7. T. Baumeister and L.S. Mark, “Standard Handbook for Mechanical Engineers”, 7th
Edition, McGraw-Hill Book Company, New York, 1967.
8. Genden Engineering Services & Construction Company, “NS-4-FR Fire Resistant Neutron
and/or Gamma Shielding Material- Product Technical Data.”
9. American Concrete Institute, “Code Requirement for Nuclear Safety Related Concrete
Structure and Commentary”, ACI-349.
10. ANSYS Inc., FLUNET 6.12.0 User’s Manuals, September 2009.
11. 曾永信,王仲容;“FLUENT應用於乾式貯存系統熱流分析之準確度校驗報告”,
INER-5744,2008.
12. Tseng, Y.S., Hung, T.C., and Pei, B.S., 2007, “The Effects of Thermal Radiation for
Electronic Cooling on Modified PCB Geometry under Natural Convection”, Numerical
Heat Transfer, Part A, 51, pp. 195-210.
13. 楊玉堂,“高容量乾式貯存系統密封鋼桶設計圖 A版”
14. 台灣電力公司,“核ㄧ廠用過核子燃料乾式貯存設施安全分析報告”
15. 楊宗佑,“核一廠乾式貯存設施密封鋼筒穩態熱傳分析計算書” ,ISFSI-04-
CAL-04-06002-03。
16. 曾永信, “密封鋼筒於傳送作業之熱流分析報告”。
17. 曾永信, “高容量用過核燃料乾式貯存設施密封鋼筒穩態熱傳分析報告”。
18. 黃毓皓,“核能電廠用過核燃料乾式貯存設施設計基準草案” ,INER- A3670H,2005。
19. NAC International Inc., “Final Safety Analysis Report for the UMS Universal Storage
System”, Rev. 5, October 2005.
20. ANSYS Inc., FLUNET 6.12.0 UDF Manuals, September 2009.
21. Bar-Cohen, A., and W. M. Rohsenow, J. Heat Transfer, 106, 116, 1984.
22. Yang, K.J., Tseng, Y.S., Wang, J.R., and Shih, C.K., 2010, “Enhancement of Passive Heat
Removal for Add-On Shielding in A Spent Fuel Dry Storage System,” ANS-2010,
American Nuclear Society (2010).