簡易檢索 / 詳目顯示

研究生: 吳宇瀚
Yu-Han Wu
論文名稱: 添加氧化硼、氧化磷、氟化鎂以及氧化鋅對低膨脹Li2O-Al2O3-SiO2玻璃陶瓷的顯微結構、熱膨脹性與抗折強度之影響
Study of Relationships among Synthesis, Microstructure , Thermal and Mechanical Properties of a Low Thermal Expansion LAS Glass-ceramic Material with the Addition of B2O3, P2O5, MgF2 and ZnO
指導教授: 李志浩
Chin-Hao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 179
中文關鍵詞: 玻璃陶瓷結晶化玻璃鋰鋁矽酸鹽熱膨脹抗折強度X光近吸收邊緣添加劑
外文關鍵詞: glass-ceramic, crystallized glass, lithium aluminosilicate, thermal expansion, flexural strength, XANES, additives
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討具低熱膨脹係數的鋰鋁矽酸鹽玻璃陶瓷其製程條件、顯微組織與熱膨脹還有機械強度等性質的關聯。
    樣品由工業原料或礦物混合,經1600℃-1700℃熔解後在不同溫度下熱處理而得,並以同步輻射的高解析度X光粉末繞射、X光吸收光譜術、掃描式電子顯微鏡以及抗折試驗機、熱差分析儀、熱機械分析儀進行研究。
    目前可以觀察出在不同熱處理條件下,試樣的顏色與透明度有所不同,經1150℃處理後呈乳白色,並得到以下的結果:
    (1) 主晶相β-鋰輝石固溶體經常在經880℃, 1小時或以上溫度熱處理的試樣中產生,六方的β-石英固溶體相變為正方的β-鋰輝石固溶體的溫度會隨添加劑的種類與含量而異(通常是降低),尤以氧化硼效果最顯著,約4.7%的B2O3,會使此溫度降至750℃以下。
    (2)不同的添加劑常會析出不同種類的次要相,添加劑含量增加常使雜相數量增加,高溫條件(1150℃)有助於次要相的發展。富含鈦的針狀結晶常在主晶相的晶界析出。
    (3)從X光近吸收邊緣的光譜特徵可知鈦、鋯和鋅離子的週遭環境會隨熱處理條件而有明顯變化,可瞭解這些元素有參與結晶過程,並可確認一些從XRD不能十分清楚觀察的次要相之存在。當試樣從非晶質轉變成高度結晶固體時,這些元素的配位態會從較低的配位數轉變為較高的配位數(鈦從4配位變為6配位,鋯從6變成8配位)。
    (4).大部分試樣的熱膨脹係數約1×10-6至2×10-6 /℃(室溫至500℃),但含氧化磷的試樣可以調整為接近零或負值(約4%P2O5)。
    (5). 大部分受測樣品(經1150℃, 1 h)的破壞模數在50 MPa(500 kgf/cm2)以上,且隨著添加劑的不同,抗折強度會有相異的變化趨勢。隨著氧化硼(至4.7%)與氧化鋅(至6%)的含量增加,其數值有上升趨勢(分別從約62 MPa(630 kgf/cm2)提升至約88 MPa(900 kgf/cm2)或78 MPa(800 kgf/cm2))。而添加氟化鎂或氧化磷則可觀察到強度有下降的趨勢(約4%的氧化磷從約62 MPa(630 kgf/cm2)降至約26 MPa(270 kgf/cm2))。


    Thermal expansion coefficients play the most important role in the practical application of lithium aluminosilicate (LAS) glass-ceramics. The effects of composition and thermal treatment conditions on microstructure, thermal expansion and mechanical strength of a low thermal expansion LAS glass-ceramic material were studied. Samples were prepared by the standard bulk method and heat-treated by two-step thermal programs to achieve a vitreous-crystalline transition. The analytical techniques to be emphasized on this work were: X-ray powder diffraction(XRD), hard X-ray absorption fine structure(XAFS) and SEM. In addition, thermal expansion coefficients were measured by thermal mechanical analysis(TMA). Mechanical strength of samples was tested by a standard three-point bending machine. Our goals for the above analysis is to figure out the formation of crystallites under different thermal treatment conditions and to understand the effects of variation of specific component(B2O3, P2O5, MgF2 and ZnO), including crystallization behavior and the local order of glassy phases. Then, try to find out the correlations among thermal expansion, mechanical strength and microstructures.
    According to the experimental results, the transparency and color of LAS glass-ceramic samples are varied significantly by different heat treatment schemes and constitutes. It is suggested that:
    (1) β-quartz solid solutions are formed below 880℃ in most of the samples. When the heating temperature is raised above 880℃, the phase transformation of hexagonal β-quartz solid solutions to tetragonal β-spodumene solid solutions usually occurs. The additives, especially B2O3, often result in a lower transformation temperature due to the decrease of viscosity of the glass matrix.
    (2) Various secondary phases are usually precipitated at higher temperatures (especially at 1150℃). The quantity, composition and stoichiometry of these phases depend on the kind and amount of additives. A needle-like Ti-rich phase can be found at grain boundaries of main phases.
    (3) The local environment of Zr, Zn and Ti is changed significantly by different thermal treatment conditions. The variation of XANES spectra confirmed that the Zr, Zn and Ti involve in the crystallization process and the XANES features also certify the existence of some minor phases, which sometimes cannot be clearly seen in the XRD data. The elements studied usually change from lower to higher coordination state when the sample transforms from an amorphous to a highly crystalline solid.(Ti from 4 to 6; Zr from 6 to 8)
    (4) The linear thermal expansion coefficients of most samples, except those containing P2O5, are 1-2×10-6 /℃ (25-500℃). Near zero or negative expansion coefficient can be obtained when about 4% P2O5 is added.
    (5) Flexural strengths of samples are usually higher than 50 MPa (500 kgf/cm2). When about 4.7% B2O3 and 6% ZnO are added in the samples, the strengths increase from about 62 MPa (630 kgf/cm2 ) to 88 MPa (900 kgf/cm2) and 78 MPa (800 kgf/cm2), respectively. MgF2 and P2O5 bearing samples accompany with a decreased flexural strength.

    中文摘要…………………………………………………………..I 英文摘……………………………………………………………..II 誌謝………………………………………………………………. III 第一章 緒論……………………………………………………..1 第一節 研究動機…………………………………………….2 第二節 研究目標…………………………………………….3 第二章 玻璃陶瓷材料原理、特性與應用……………..7 第一節 玻璃材料特性…………………………………………7 第二節 玻璃的相分離…………………………………………9 第三節 控制結晶化………………………………………….. 12 第四節 玻璃陶瓷材料…………………………………………18 2.4.1. 玻璃陶瓷設計原理……..……………………………18 2.4.2. 玻璃陶瓷的製作………..……………………………21 第五節 玻璃陶瓷的性質與應用…………………………….....27 2.5.1. 機械強度……………………………………………..28 2.5.2. 熱安定性……………………………………………..29 2.5.3. 化學性質….……………………………………….....29 2.5.4. 光學性質……………………………………………..30 第六節 鋰鋁矽酸鹽玻璃陶瓷簡介…………………………….35 第七節 β-鋰霞石與β-鋰輝石晶體結構與性質……………..38 第八節 LAS玻璃陶瓷的晶相發展……………………………43 第九節 各種添加劑對LAS玻璃陶瓷的影響………………...46 第三章 樣品製備與研究方法……………………………48 第一節 綜論……………………………………………………48 第二節 實驗流程………………………………………………49 3.2.1. 組成設計………………………………………….....49 3.2.2. 母玻璃製備…………………………………………..50 3.2.3. 熱處理條件…………………………………………..50 3.2.4. 顯微結構研究方式…………………………………..54 3.2.5. 性質測試……………………………………………..56 3.2.6. 結果分析……………………………………………..58 第三節 分析方法發展回顧…………………………………….59 3.3.1. 差熱分析方法………………………………………..59 3.3.2. X-ray繞射法……………………………….……….63 3.3.3. X光吸收光譜術……………………………………71 第四章 顯微組織與成分變化對性質的影響………….75 第一節 一般組成的顯微組織………………………………….75 第二節 添加氧化硼對顯微組織之影響……………………….89 第三節 添加氧化磷對顯微組織之影響……………………….99 第四節 添加氟化鎂對顯微組織之影響………………………110 第五節 添加氧化鋅對顯微組織之影響……………………….118 第六節 X光吸收光譜微細結構分析………………………….126 4.6.1. 鈦的K層X光吸收光譜………………………..….126 4.6.2. 鋯的K層與LII,LIII層X光吸收光譜…………....132 4.6.3. 鋅的K層X光吸收光譜……………………………136 第七節 熱性質與機械強度探討………………………………141 4.7.1. 熱膨脹性與成分之關係………………………….….141 4.7.2. 抗折強度與組成間之關連…………………………..147 第八節 綜合討論……………………………………………….153 第五章 結論與建議……………………………………..158 參考資料…………………………………………………..164 附錄……………………………………………………………… .170

    [1]. S. D. Stookey, US Patent 2 920 970, January, 1960
    [2]. Z. Strand,”Glass-Ceramic Materials”, Glass Science and Technology vol.8, Amsterdam-Oxford, 1986
    [3]. P.W.McMillan, “Glass-Ceramics”, second edition, Academic Press, 1979
    [4]. Wolfram Holand and George Beall, “Glass-ceramic Technology”, The American Ceramic Society, 2002
    [5]. George H. Beall and David A. Duke “Glass-Ceramic Technology”, Glass Science and Technology, vol.1, Academic Press, 1983
    [6]. Han Bach,” Low thermal expansion glass ceramics”, Spring-verlag, 1995
    [7]. J.Zarzycki,”Glasses and the Vitreous State”,translated from French by William.D.Scott and Claire Massart,Cambridge university press,1991
    [8]. Pablo G. Debenedetti and Frank H. Stillinge,” Supercooled liquids and the glass transition”, Nature, vol.410, pp.259-267, 2001
    [9]. Salvatore Torquato, “Glass transition: Hard knock for thermodynamics” Nature, vol.405, pp.521-523, 2000
    [10]. 吳宇瀚,「玻璃的相分離行為與應用」,陶業,第20卷第2期,pp.16-23, 2001
    [11]. 吳振名,「第28章:玻璃陶瓷」,陶瓷技術手冊(下),經濟部技術處、產業科技發展協進會、粉末冶金協會,p.963-986,1994
    [12]. George H. Beall and Linda R. Pinckeny, “Nanophase glass-ceramics”, Journal of the American Ceramic Society, vol.82, pp. 5-16, 1999
    [13]. 汪建民,「玻璃陶瓷之原理、製造及其應用」,精密陶瓷科技,工研院工材所&經濟部中小企業處,pp.332-359,1987
    [14]. 徐錦志,「微晶玻璃陶瓷」, 陶業季刊,第19卷第4期, pp.11-18, 2000
    [15]. 吳宇瀚,「建築用玻璃陶瓷的設計」,陶業,第19卷第4期,pp.19-33, 2000
    [16]. George H. Beall,”Design of Glass-ceramics”,Solid State Science, vol.3 no.3&4, pp.333-354,1989
    [17]. 吳宇瀚、黃博民,「結晶化玻璃人造石材」,陶業,第22卷第2期,pp.32-37, 2003
    [18]. H. Scheidler, and E. Rodek, “Li2O–Al2O3–SiO2 Glass-ceramics”, American Ceramic Society Bulletin, vol.68, pp. 1926-1930, 1989
    [19] 徐錦志, 「MgO-CaO-SiO2-P2O5 玻璃陶瓷結晶行為之研究」,博士論文,國立清華大學材料科學工程研究所,1991
    [20]. George H. Beall and David A. Duke,”Transparent Glass-Ceramics”,Journal of Material Science, vol.4, p.340-352,1969
    [21]. 鄭宜賓, “LCD用玻璃基板—市場與技術”, 化 工 訊 息 傳 真,第5卷第4期, 2000
    [22]. 鄭宜賓, “玻璃基板市場暨技術趨勢”, ITIS產業評析, 2000
    [23]. 葉仰哲, ” LCD用玻璃基板發展趨勢”, ITIS產業評析, 2001
    [24]. 葉錦清, ”全球性光纖供應短缺”, 光電產業速報第69期,1996
    [25]. A. Sakamoto and S. Yamamoto “Fabrication of Li2O-Al2O3-SiO2 glass-ceramic ferrules by precision drawing of crystallized performs”, Journal of Material Science, vol.38, pp.2305 – 2310, 2003
    [26]. F.A.Hummel, “Thermal expansion properties of some synthetic lithia minerals”, Journal of the American Ceramic Society, vol.34, pp.235-239, 1951
    [27]. 許國銓,「結晶化玻璃系列之三-低膨脹結晶化玻璃」,材料與社會,第58期,pp.12-17,1991
    [28]. P.E.Dohfrty, D.W.Lee and R.S.Davis, “Direct observation of the crystallization of Li2O–Al2O3–SiO2 glass containing TiO2”, Journal of the American Ceramic Society, vol.50, pp.77–81 , 1967
    [29]. Veronika Maier and Gerd Müller, “Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics”, Journal of the American Ceramic Society, vol.70, pp.C-176–178, 1987
    [30]. Astrid Nordmann and Yi-bing Cheng, ” Crystallization behaviour and microstructural evolution of a Li2O–Al2O3–SiO2 glass derived from spodumene mineral”, Journal of Material Science, vol.32, 83 – 89, 1997
    [31]. Astrid Nordmann, Yi-bing Cheng, T.J. Bastow and A.J.Hill, ”Structural Characterization of Lithium Aluminosilicate Glass and Glass-ceramics Derived from Spodumene Mineral” J. Phys.:Condens. Matter 7, pp3115-3128, 1995
    [32]. D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M.F. Ferreira.,” Synthesis of lithium aluminosilicate glass and glass-ceramics from spodumene material”, Ceramics International, vol.30, pp.1023-1030, 2004
    [33]. Sarah Knicker, Michelle R.Tuzzolo and Samuel Lawhorne, “Sinterable β-spodumene glass-ceramics“, Journal of the American Ceramic Society, vol.72, pp.1873-1879, 1989
    [34]. Jiin-Jyh Shyu and Ming-Tsung Chiang, “Sintering and Phase Transformation in B2O3/P2O5-Doped Li2O.Al2O3.4SiO2 Glass-Ceramics”, Journal American Ceramic Society, vol.83, pp.635–39 , 2000
    [35]. Jiin-Jyh Shyu and Hisn-Hui Lee, “Sintering, crystallization and properties of B2O3/P2O5-Doped Li2O.Al2O3.4SiO2 Glass-Ceramics”, Journal of the American Ceramic Society, vol.78, pp.2161-2167, 1995
    [36]. Yun-Mo Sung, Stanley A.Dunn and James A.Koutsky, “The effect of boria and titania addition on the crystallization and sintering behavior of Li2O-Al2O3-4SiO2 glass”, Journal of the European Ceramic Society, vol.14, pp.455-462, 1994
    [37]. G.Helsch, J.Gunster, G.H.Frischat, K.Helming, B.Roling and S.Murugavel, “Preparation , characterisation and properties of textured glass ceramics in the system Li2O-Al2O3-4SiO2”, Physical Chemistry Glasses, vol.44, pp.19-25, 2003
    [38]. W.Ostertag, G.R.Fischer and J.P.Williams, “Thermal expansion of syntheticβ-spodumene andβ-spodumene-silica solid solutions”, Journal of the American Ceramic Society, vol.51, pp.651–654 , 1968
    [39].M.H.Lewis, J.Metcalf-Johansen and P.S.Bell, “Crystallization mechanism in glass-ceramics”, Journal of the American Ceramic Society, vol.62, pp.278–288 , 1979
    [40]. L. Arnault, M. Gerland, A. Rivi Ere,” Microstructural study of two LAS-type glass-ceramics and their parent glass”, Journal of Materials Science, vol.35, pp. 2331 – 2345, 2000
    [41]. A.Ramos and M.Gandais, ”Earliest stages of crystal growth in a silicate glass containing titanium and zirconium as nucleating elements-HRTM and XAS study”, Journal of Crystal Growth, vol.100, pp.471-480, 1990
    [42]. J.Petzoldt and W.Pannhorst, “Chemistry and structure of glass-ceramic materials for high precision optical applications”, Journal of Non-Crystalline Solids 129, pp.191-198, 1991
    [43].P.Riello, P.Canton, N.Comelato, S.Polizzi, M.Verita, G.Fagherazzi, H.Hofmeister, S.Hopfe, ”Nucleation and Crystallization Behavior of Glass-ceramic Materials in the Li2O–Al2O3–SiO2 system of interest for their transparency properties”, Journal of Non-Crystalline Solids 288, pp.127-139, 2001
    [44]. Luisa Barbieri, Anna Bonamartini Corradi, Cristina Leomelli, Cristina Silligardi, Tiziano Manfredini and Gian Carlo Pellacani, “Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics”, Material Research Bulletin, vol.32, pp.637-648, 1997
    [45]. C.Siligardi, L.Barbieri, A. Bonamartini Corradi, C.Leonelli, M.De Sanctis and A. Lazzeri, “Colour development during devitrification in Li2O-ZnO-Al2O3-SiO2 glasses under conventional and microwave heating”, Physical Chemistry Glasses, vol.41, pp.81-88, 2000
    [46]. Kangguo Cheng, “Determining crystallization kinetic parameters of Li2O-Al2O3-SiO2 glass from derivative differential thermal analysis curves”, Materials Science and Engineering B60, pp.194–199, 1999
    [47]. J. Rocherulle, “Nucleation and growth of a lithium aluminium silicate glass studied by differential thermal analysis”, Materials Research Bulletin, vol.35, pp.2353–2361, 2000
    [48]. Guedes, M.; Ferro, A.C.; Ferreira and J.M.F., “Nucleation and crystal growth in commercial LAS compositions”, Journal of the European Ceramic Society, Vol. 21, pp. 1187-1194, 2001
    [49]. K. S. Ranasinghe, C. S. Ray and D. E. Daya,“ Generalized Method for Determining the Crystal Nucleation and Growth Rates in Glasses by Differential Thermal Analysis”, Journal of Materials Science, vol. 37, pp.547– 555 ,2002
    [50]. Mark J. Davis, “Crystallization Measurements Using DTA Methods: Applications to Zerodur”, Journal of the American Ceramic Society, Vol.86 no.9,pp.1540–1546, 2003
    [51]. Jean Rocherullé and Patricia Bénard-Rocherullé, “ The devitrification of a LAS glass matrix studied by X-ray powder Diffraction”, Solid State Sciences, vol.4, pp.999-1004, 2002
    [52]. A.Benedetti and G.Fagerazzi, “X-ray diffraction analysis at high temperature on two ceramic systems”, Journal of Materials Science, vol. 18, pp.2510–2516, 1983
    [53]. Ki-Dong Kim , Seung-Heun Lee and Hyo-Kwon Ahn, “Observation of nucleation effect on crystallization in lithium aluminosilicate glass by viscosity measurement”, Journal of Non-Crystalline Solids, vol.336, pp.195–201, 2004
    [54]. W. Pannhorst, “Low expansion glass ceramics-review of the glass ceramics Ceran and Zerodur and their applications”, in “Nucleation and Crystallization in Glasses and Liquids”,edit by Michael C.Weinberg, pp.267-276, 1992
    [55]. George H. Beall, ”Design and properties of glass-ceramics”, Annual Review of Material Science, vol.22, pp.91-119, 1992
    [56]. K.H.Lee, D.A.Hirschfeld and J.J.Brown,”In-situ reiforced glass-ceramic in the lithia-alumina-silica system”, in “Nucleation and Crystallization in Glasses and Liquids”,edit by Michael C.Weinberg, pp.293-301, 1992
    [57]. E. I. Suzdal’tsev,”” Laws of formation of the structure and properties of pyroceramic of a lithium alumosilicate composition in the process of thermal treatment”, Journal of Engineering Physics and Thermophysics, Vol. 75, No. 2, 2002
    [58]. Moo-Chin Wang and Min-Hsiung, “Properties and crystallization of Li2O–CaO-Al2O3–SiO2 glasses”, Journal of Material Science, vol.8, pp.890-898, 1993
    [59]. Moo-Chin Wang, “Crystal growth and characterization of CaO-bearing of Li2O–Al2O3–SiO2–TiO2 glass-ceramic”, Ceramics International, vol.19, pp.223-230, 1993
    [60]. Moo-Chin Wang, M.H.Hon and F.S.Yen, “Growth behavior and morphology of lithium-calcium aluminosilicate(LCAS) glasses”, Journal of Crystal Growth, vol.91, pp.155-162, 1988
    [61]. Moo-Chin Wang, M.H.Hon and F.S.Yen, “Crystallization of β-spodumene in the Li2O–CaO-Al2O3–SiO2 system”, Journal of Crystal Growth, vol.84, pp.638-646, 1987
    [62]. Yun-Mo Sung, “Influence of BaO addition on the phase formation characteristics in Li2O–Al2O3–ZnO–SiO2–TiO2–ZrO2 glass“, Journal of Material Science, Vol. 17, No. 3, pp517-520, 2002
    [63]. Kangguo Cheng, ”Carbon effects on crystallization kinetics of Li2O-Al2O3-SiO2 glasses”, Journal of Non-Crystalline Solids , vol.238, pp.152-157, 1998
    [64]. Jen-Yan Hsu and Robert F.Speyer, “Comparsion of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O.Al2O3.6SiO2 glasses”, Journal of the American Ceramic Society, vol.72, pp.2334-2341, 1989
    [65]. Jen-Yan Hsu and Robert F.Speyer, “Crystallization of Li2O.Al2O3.6SiO2 glasses containing niobium pentoxide as nucleating dopant”, Journal of the American Ceramic Society, vol.74, pp.395-399, 1991
    [66]. Jen-Yan Hsu and Robert F.Speyer, “Influences of zirconia and silicon nucleating agents on the devitrification of Li2O.Al2O3.6SiO2 glasses”, Journal of the American Ceramic Society, vol.73, pp.3585-3593, 1990
    [67]. Jiin-Jyh Shyu and Chi-Sheng Hwang, “Effect of Y2O3 and La2O3 addition on the crystallization of Li2O.Al2O3.4SiO2 glass-Ceramics”, Journal of Material Science, vol.31, pp.2631-2639, 1996
    [68]. NSRRC BL17C, X光吸收光譜術實驗站操作手冊
    [69]. Chandra S. Ray, Xiangyu Fang, and Delbert E. Day, “New Method for Determining the Nucleation and Crystal-Growth Rates in Glasses ”, Journal of the American Ceramic Society,Vol.83, pp.865-872, 2000
    [70]. Katsumasa Yasukawa, Yoshitake Terash and Akira Nakayama, “Crystallinity Analysis of Glass-Ceramics by the Rietveld Method”, Journal of the American Ceramic Society, Vol.81, pp.2978-2982, 1998
    [71]. R.A.Young et al.,“The Rietveld Method”, Oxford University Press, 1993
    [72]. P.Riello, P.Canton, N.Comelato, S.Polizzi, M.Verita, G.Fagherazzi and H.Hofmeister, “Nucleation and crystallization behavior of glass-ceramic materials in the Li2O–Al2O3–SiO2 system of interest for their transparency properties”, Journal of Non-Crystalline Solids, Vol.288, pp. 127-139, 2001
    [73]. Sin Lung Lin, “The Determination of Crystallinity in Glass-ceramics by X-ray Diffraction Method”, The Chinese Ceramic Society Bulletin, Vol.12, No.4, pp.57-67, 1993
    [74]. 王素蘭, 「如何從粉末X光繞射數據決定晶體結構」, 科儀新知, 第13卷第6 期, pp6-12, 1992
    [75]. J.J. Rehr and R.C.Albers, “Theoretical approach to X-ray absorption fine structure”, Reviews of Modern Physics, vol.72, pp.621-654, 2000
    [76]. 李志甫, “X光吸收光譜術在觸媒特性分析上的應用”, 化學, 53, pp.280-293, 1995
    [77]. John M.Jewell, Marie S.Spess, Renee L.Ortolano and James E.Shelby, ”Effect of heat-treatment temperature on the properties of a lithium aluminosilicate glass”, Journal of the American Ceramic Society, vol.74, pp.92-97, 1991
    [78]. Cornelis Klein & Cornelius.S.Hurlbut, JR.,”Manual of Mineralogy”, 21st Edition, John Wiley & Sons,1993
    [79]. 謝世豪,「第26章:玻璃之結構與特性」,陶瓷技術手冊,(下),經濟部技術處、產業科技發展協進會、粉末冶金協會,p.876-908,1994
    [80]. P.L.Gai and Q.Q.Chen, “Electron microscopy of Li2O-Al2O3-SiO2 glass ceramics”, Acta Cryst., vol.A38, pp.741-743, 1982
    [81]. Hu An-Min., Liang Kai-Ming, Peng Fei, Wang Guo-Liang and Shao Hua, “Crystallization and microstructure changes in fluorine-containing Li2O-Al2O3-SiO2 glasses”, Thermochimica Acta, vol.413, pp.53–55, 2004
    [82]. J. A. Griggs, K. J. Anusavice. and J. J. Mecholsky, ” Devitrification and microstructural coarsening of a fluoride-containing barium aluminosilicate glass”, Journal of Materials Science, vol.37, pp.2017 – 2022, 2002
    [83]. S. Donald Stookey, George H. Beall, and Joseph E. Pierson “Full-color photosensitive glass”, Journal of Applied Physics, vol.49, pp. 5114-5123, 1978
    [84]. Francois Farges, G.E.Brown and J.J.Rehr, “Corrdination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds”, Geochimica et Cosmochimica Acta, vol.16, pp.3023-3038, 1996
    [85]. J. Wong F. W. Lytle R. P. Messmer and D. H. Maylotte” K-edge absorption spectra of selected vanadium compounds” Physical Review B, vol.30, pp.5596–5610 (1984)
    [86]. Veronika Maier and Ronald Frahm, “X-ray absorption studies of the short-range order in lithium aluminosilicate glass-ceramics”, Glasstech.Ber., vol.62, pp.20-28, 1989
    [87]. Francois Farges, G.E.Brown, A.Navrotsky, H.Gan and J.J.Rehr, “Corrdination chemistry of Ti(IV) in silicate glasses and melts:II. Glasses at ambient temperature and pressure”, Geochimica et Cosmochimica Acta, vol.16, pp.3039-3053, 1996
    [88]. Rainer Roesky and James R.Varner, “Influence of thermal history on the crystallization behavior and hardness of a glass-ceramic”, Journal of the American Ceramic Society, vol. 74, pp. 1129–1130, 1991
    [89]. A.Ramos, M.Gandais and J.Petiau, ”Study of nucleation process in (Li2O, Al2O3, 4SiO2) glasses, by X-ray absorption spectroscopy and transmission electron microscopy”, Journal De Physique, vol.C8, pp.491-494, 1985
    [90]. T.Dumas and J.Petiau, “Structural organization around nucleating elements (Ti, Zr) and Zn during crystalline nucleation process in silico-aluminate glasses”, in “EXAFS and Near Edge Structure III”, edit by K.O.Hodgson, B.Hedman and J.E.Penner-Hahn, pp.311-313, 1984
    [91]. Laurence Galoisy, Emmanue`le Pe´legrin, Marie-Anne Arrio, Philippe Ildefonse and Georges Calas, “Evidence for 6-Coordinated Zirconium in Inactive Nuclear Waste Glasses”, Journal of the American Ceramic Society, vol. 82, pp. 2219–2224, 1999
    [92]. L.Galoisy, L.Cormier, G.Calas and V.Briois, “Environmant of Ni, Co and Zn in low alkali borate glasses: information from from EXAFS and XANES spectra”, Journal of Non-Crystalline Solids, vol.293-295, pp.105-115, 2001
    [93]. Basudeb Karmakar, Paritosh Kundu, Sunirmal Jana, and Ravindra Nath Dwivedi, “Crystallization Kinetics and Mechanism of Low-Expansion Lithium Aluminosilicate Glass-Ceramics by Dilatometry”, Journal of the American Ceramic Society, vol. 85, pp.2572–2574, 2002
    [94]. E. I. Suzdal’tsev1 and A. P. Sosulina, “Analysis and systematization of defects involved in the mechanical strength degradation of β-spodumene-based glass ceramics”, Refractories and Industrial Ceramics, Vol. 45, No. 2, pp.105-110, 2004
    [95]. E. I. Suzdal’tsev1, “Investigation of the strength and elastic properties of glass-ceramic of a lithium alumosilicate composition”, Journal of Engineering Physics and Thermophysics, Vol. 75, No. 2, pp.416-423, 2002
    [96]. H.J.Holland and S.T.Gulati, “A mechanism for strengthening fluorine-containing lithium aluminum silicate glass-ceramics”, Journal of the American Ceramic Society, vol.63, pp. 686–690, 1980
    [97]. Rustum Roy and Dinesh Agrawal, “Thermal-expansion materials not so new”, Nature 388, pp.433, 1997
    [98]. Robert.E. Reed-Hill, “Physical metallurgy principles”, third edition, Pws-Kent, 1992

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE