簡易檢索 / 詳目顯示

研究生: 林峻模
Lin, Chun-Mo
論文名稱: 以TDS及FTIR方法探討鋁合金樣品之水氣吸附
Study of water vapor adsorption on aluminum surface by using the TDS and FTIR methods
指導教授: 陳俊榮
Chen, June Rong
口試委員: 薛心白
Hsueh, Hsin Pai
吳怜慧
Wu, Ling Hui
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 紅外光光譜儀熱脫附譜圖水分子吸附
外文關鍵詞: FT-IR, TDS, Water vapor, Adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用FTIR系統,測量紅外光吸收峰值轉換為水分子層數之校正因子,以得到水分子吸附量。並且也在該系統上建立熱脫附系統,進行熱脫附分析,定量熱脫附過程中水分子脫附量,比較二者差異。

    在FTIR系統進行偏振調變紅外光反射吸收光譜之量測中,利用殘餘氣體分析儀以及游離式真空計,得到殘餘氣體分析儀水氣信號之電流強度轉換水氣分壓因子為1.1x10^6Pa/A。在冰膜實驗中,利用液態氮冷卻樣品,使凝結係數近似為1,帶入氣體動力公式計算吸附層數,得到轉換光譜吸收峰值對水分子層數校正因子約為7.5±54%。

    在熱脫附實驗中,建立了紅外光加熱系統,並且重新設計載具與樣品,使樣品溫度能夠等速率上升至550℃,以便可以同時進行FTIR以及熱脫附分析,當固定升溫速率為0.25˚K/s,可以得到在溫度約342℃與413℃時,存在脫附尖峰,其脫附能為(39.9±5%) kcal/mol以及(46.9±1.5%) kcal/mol。而在溫度377℃時雖有脫附峰值,但此峰值來自載具的脫附影響,無法計算脫附能。由熱脫附譜圖分析,得知0℃以下和0℃以上之熱脫附量,分別為2.9x10^13和8.6x10^17個水分子。然而FTIR分析樣品表面水分子吸附量約為1.3x10^16個水分子。其中加熱之紅外光會影響FTIR之偵檢器的訊號的程度,以及樣品載具熱脫附釋氣的干擾可能是差異的主因。


    The FTIR system was used to study the calibration factor of the amount of water adsorption on aluminum surface to the intensity of the IR absorption spectrum. In addition, a TDS system was established at the same vacuum system to measure the amount of water desorption during thermal desorption process. The calibration factor was measured as 7.5±54% layer/absorption in this experiment.

    For the TDS experiment, an aluminum sample was heated up to 550℃ at a rate of 0.25˚K/s after being exposed to water vapor at 6.5x10^(-7)Pa for 40 mins. The results showed that the desorption peaks appeared at 342℃ and 413℃. The corresponding desorption energy were (39.9±5%) kcal/mol and (46.9±1.5%) kcal/mol. The amounts of water vapor desorbed were 2.9x10^13 and 8.6x10^17 molecules for the heating process under and above 0℃, respectively. These numbers are different from the data of 1.3x10^16
    molecules measured by the FTIR analysis. There were two reasons about the difference that the effect of the background from sample holder and the interfered from the scattered heating IR.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 v 圖目錄 vii 第一章、引言 1 第二章、實驗原理 5 2.1 真空中分子吸附 5 2.2 紅外光與水分子的關聯性 6 2.3 紅外光分析 6 2.3.1 傅立葉轉換紅外光光譜 6 2.3.2 偏振調變式紅外光反射吸收光譜 7 2.4 熱脫附譜圖分析 8 2.4.1 脫附能計算 9 2.5 吸附層數計算 11 第三章、實驗系統與實驗步驟 12 3.1 實驗系統 12 3.1.1 光彈調制紅外光反射分析系統 12 3.1.1.1 傅立葉轉換紅外光光譜儀 12 3.1.1.2 光彈調制光路 13 3.1.2 真空系統 15 3.1.3 熱脫附系統 16 3.2 實驗步驟 17 3.2.1 樣品製備和前置實驗 17 3.2.1.1 樣品製備 17 3.2.1.2 水氣純化實驗 17 3.2.1.3 樣品除氣(degas)處理 18 3.2.2 熱脫附系統升溫測試實驗 19 3.2.3 PMIRRAS吸收峰值轉換水分子層數因子校正實驗 19 3.2.3.1 降溫過程 20 3.2.3.2 升溫過程 20 第四章、結果與討論 22 4.1 前置實驗 22 4.1.1 水氣純化實驗 22 4.1.2 樣品除氣(degas)處理 23 4.2 熱脫附系統升溫測試實驗 23 4.3 PMIRRAS吸收峰值轉換水分子層數因子校正 26 4.3.1 FTIR吸收光譜校正 27 4.3.2 熱脫附實驗總脫附量校正 28 4.3.3 轉換因子 29 4.3.4 水分子熱脫附量 29 4.3.5 紅外線加熱對PMIRRAS影響 31 4.4 誤差分析 33 4.4.1 儀器誤差 33 4.4.2 校正因子誤差分析 34 4.4.3 熱脫附量誤差分析 35 4.4.4 脫附能誤差分析 36 第五章、結論 37 參考文獻 40 圖 45

    1. D. J. Wang, J. R. Chen, G. Y. Hsiung, J. G. Shyy, J. R. Huang, S. N. Hsu, K. M. Hsiao, and Y. C. Liu,“Vacuum chamber for the wiggler of the Taiwan Light Source at the Synchrotron Radiation Research Center”,J. Vac. Sci. Technol. A 14(4), 2624 (1996).

    2. John F. O’Hanlon, “A User’s Guide to Vacuum Technology,” John Wiley & Sons, New York (1980)

    3. H. F. Dylla, D. M. Manos and P. M. LaMarche, Correlation of outgassing of stainless and aluminum with various surface treatments”, J. Vac. Sci. Technology. A 11, 2623(1993).

    4. Minxu Li and H. F. Dylla, “Model for the outgassing of water from metal surfaces”, J. Vac. Technol. A, 11, 1702 (1993).

    5. H. F. Dylla, “Glow discharge techniques for conditioning highvacuum systems”, J. Vac. Sci. Technol. A 6, 1276 (1988).

    6. K. Akaishi, K. Ezaki, Y. Kubota, O. Motojima, “Reduction of water outgassing and UHV production in an unbaked vacuum chamber by neon gas discharge”, Vacuum 53, 285 (1999).

    7. N. C. Balchin, “The friction of clean metals immerse in liquid sodium”, Br. J. Appl. Phys. 13, 564-569 (1962).

    8. 熊高鈺、詹哲鎧、張進春、陳慶隆、陳彥斌、許憲能、薛心白、陳俊榮,“同步加速器台灣光子源超高真空系統設計”,真空科技 21(3-4),12-19 (2008).

    9. 陳俊榮,“從台灣光子源建造談及加速器技術發展”,真空科技 21(3-4), 6-11(2008).

    10. M. Mohri, S. Maeda, H. Odagiri, M. Hashiba , T. Yamashina and H. Ishimaru,“Surface study of Type 6063 aluminum alloys for vacuum chamber materials”, Vacuum, V34(6) (1984) 643.

    11. 陳俊榮,曾湖興,劉遠中,“鋁合金超高真空系統的研究”,核子科學 24, 25(1987).

    12. 陳菁華,“鋁合金表面水釋氣之研究”,碩士論文,國立清華大學原子科學研究所,(2000).

    13. 鄭宇尊,“超高真空樣品經乾燥曝氣之熱釋釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2008).

    14. 林怡君,“以極乾燥氮氣曝氣之鋁合金真空腔熱釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2011).

    15. 蕭屹崴,“利用不同氧氣含量擠型之鋁合金表面熱釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2012).

    16. 楊財烈,“鋁合金表面曝水後受光照射作用之探討”,碩士論文,國立清華大學原子科學系,(2003).

    17. 李仁佑,“真空中絕熱膨脹水氣吸附作用之探討”,碩士論文,國立清華大學原子科學系,(2003).

    18. 葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2007).

    19. 劉文峰,“利用紅外光光譜儀探討真空中水氣吸附現象”,碩士論文,國立清華大學生醫工程與環境科學系,(2008).

    20. 賈立凱,“以紅外光光譜儀定量真空中鋁合金表面的水氣吸附”,碩士論文,國立清華大學生醫工程與環境科學系,(2009).

    21. 黃晧昌,“以PMIRRAS量測鋁合金樣品表面經處理後的水分子吸附”,碩士論文,國立清華大學生醫工程與環境科學系,(2013).

    22. Weissler, G. L.,“Vacuum Physics and Technology”,New York : Academic Press, 1979.

    23. Luo Zhixun, Fang Yan, Yao Jiannian,“A New Approach for Non-destructive Detection of Dye Molecules by Combination of Terahertz Time-domain Spectra and Raman Spectra”, Trends in Applied Sciences Research 2(4), 295-303 (2007).

    24. V. P. Tolstoy, I. V. Chernyshova,“Handbook of infrared spectroscopy of ultrathin films”, John Wiley & Sons Inc, Canada, (2003) pp12.

    25. A. A. Michelson,“Recent advances in spectroscopy”, Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam (1967).

    26. T. Buffeteau, B. Desbat and J. M. Turlet,“Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films :procedure and quantitative analysis”, Applied spectroscopy 45, 380 (1991).

    27. R. Corn,“Rapid-scan Polarization-modulated Fourier-trasform Infra-red Reflection Absorption Spectroscopy”, Applications News for Users of Photoelastic Modulators, 1-4 (1996).

    28. R. G. Greenler,“Infrared study of adsorbed molecules on metal surface by reflection techniques”, J. Chem. Phys. 44(1), 310 (1966).

    29. F. von Zeppelin, M. Haluška, M. Hirscher,“Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids”, Thermochimica Acta, Vol. 404 (2003) 251-258.

    30. A. M. de Jong and J. W. Niemantsverdriet,“Thermal desorption analysis: comparative test of ten commonly applied procedures”, Surface Science 233 (1990) 355-365.

    31. D. E. Brown, S. M. George, C. Huang, E. K. L. Wong, Keith B. Rider,R. Scott Smith, Bruce D. Kay, “H2O condensation coefficient and refractive index for vapor-deposited ice from molecular beam and optical interference measurements”, J. Phys. Chem. 1996, 100, 4988-4955.

    32. Santanu Debnath, Eric Jiang, John Coffin, “Performance
    Characteristics of the Advanced ETC EverGlo IR Source”, Thermo Fisher Scientific, Madison, WI, USA.

    33.“Synchronous Sampling Demodulator”, GWC Instruments

    34. H. Ishimaru, J. Vac. Sci. Technol. A2, 1170(1984).

    35.劉奕凡,“鋁合金表面經臭氧水清洗之真空釋氣研究”,碩士論文,國立清華大學生醫工程與環境科學所,(2006)

    36. Kenneth D. Kempfert, Eric Y. Jiang, Sberwin Oas, John Coffin,“Detectors for Fourier Transform Spectroscopy”, Thermo Nicolet Spectroscopy Research Center, Madison, WI, USA

    37. G. L. Weissle, R. W. Carlson,“Vacuum Physics and technology”, New York : Academic Press, (1979), p.16

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE