簡易檢索 / 詳目顯示

研究生: 鄭致灝
Cheng, Chih Hao
論文名稱: 以半導體雷射非線性動態產生之光子微波為基礎所開發之新穎雷達與雷射雷達
Novel Lidar and Radar Development Using Photonic Microwave Generated from Nonlinear Dynamics of Semiconductor Lasers
指導教授: 林凡異
Lin, Fan Yi
口試委員: 吳仁銘
許晉瑋
黃勝廣
李夢麟
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 105
中文關鍵詞: 雷射雷達雷射光子微波半導體雷射非線性動態
外文關鍵詞: Lidar, Radar, Photonic Microwave, Semiconductor Lasers, Nonlinear Dynamics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究以半導體雷射非線性動態產生之光子微波訊號(photonic microwave)所開發的新穎雷達與雷射雷達。我們運用光子微波訊號的特點,將原先已發展於雷達與雷射雷達的技術相互整合,同時也讓微波與雷射光彌補彼此本質上的優缺點,進而提升雷達與雷射雷達的測量效能。此外,由於半導體雷射具備豐富的非線性動態,所產生的光子微波訊號可以從頻寬為Hz等級的窄頻弦波涵蓋到頻寬為GHz等級的寬頻非週期性訊號,因此我們將以其作為開發雷達與雷射雷達的基礎。在本論文中,根據不同偵測環境下的需求,我們分別將半導體雷射所產生之窄頻周期一振盪態(period-one state)與寬頻混沌態(chaos state)應用於雷達與雷射雷達上。

    在雷射雷達的部分,我們以周期一振盪態開發了一新穎雙頻雷射都普勒測速儀。運用光作為載波將微波訊號送至目標偵測其速度,雙頻雷射都普勒測速儀具有抑制斑點雜訊(speckle noise)及改善探測訊號同調性之特點。相較於傳統的單頻雷射都普勒測速儀,當一個位於108 m遠的目標物以4 cm/s的軸向速度(longitudinal velocity)和5 m/s的橫向速度(transverse velocity)進行運動時,雙頻雷射都普勒測速儀的速度解析度大幅提升了近4個數量級。

    為了更進一步增進雙頻雷射都普勒測速儀的量測效能,我們將自混頻(selfmixing)架構引入至雙頻雷射都普勒測速儀中,從而發展了自混頻雙頻雷射都普勒測速儀。藉由自混頻架構的引入,雙頻雷射都普勒測速儀具備了更高之量測靈敏度與辨別目標物運動方向的能力。當來自目標物之逆向散射光強度僅有數微瓦(microwatt)時,自混頻雙頻雷射都普勒測速儀在不使用雪崩式光電偵測器(avalanched photodetector)與光電倍增管(photomultiplier tube)的情況下,即可具有23 dB以上的訊雜比(SNR)。

    在雷達的部分,我們提出將寬頻的混沌態結合電子式外插(electrical heterodyne)技術,產生多重輸入多重輸出(multiple-input-multiple-output)雷達所需的正交(orthogonal)微波訊號。藉由分析各通道外插混沌訊號彼此間的相關性,可以發現相關運算時間長度(correlation time)決定了產生正交外插混沌訊號所需的最小本地振盪器(local oscillator)之頻率間隔。我們的研究顯示當相關運算長度為數微秒時,數千個相互正交的外插混沌訊號可以被同時產生。

    此外,我們更進一步利用電子式外插技術來改善半導體雷射受光回饋下所產生混沌訊號的品質。經過外插技術的處理,混沌訊號頻譜的能量將被重新分布,使原先在低頻處能量較低的部分可以被抬升,同時也可消除頻譜上因回饋系統所造成的循環頻率(loop frequency)。由於頻譜的能量分布更為平整,原先存在於混沌訊號中的時間延遲特徵(time delay signature) 可以被抑制,有效頻寬也可以同時得到提升。相較於原始的混沌訊號,外插混沌訊號的時間延遲特徵被抑制了63%,有效頻寬可被提升46%。


    Novel lidar and radar using photonic microwave generated from nonlinear dynamics of semiconductor lasers have been proposed and investigated. Benefitting from the photonic microwave, the techniques already developed in radar and lidar are possible to be integrated. The inherent properties of the laser light and microwave can also complement with each other to improve the performance of lidar and radar. In addition, based on nonlinear dynamics of semiconductor lasers, diverse photonic microwave covering from sinusoidal signals with linewidths of several Hz to non-periodic and wideband signals with bandwidths of several GHz can be obtained. In this dissertation, according to detection scenarios, the narrowband period-one (P1) state and broadband chaos state are explored for different lidar and radar applications.

    For lidar, a dual-frequency laser Doppler velocimeter (DF-LDV) based on the P1 state is investigated. By probing the target with the light-carried microwave, the DFLDV successfully shows the ability of speckle noise reduction and coherence enhancement. Compared with the conventional single-frequency laser Doppler velocimeter (SF-LDV), the velocity resolution of the DF-LDV is improved by 4 orders for a target with a longitudinal velocity vz = 4 cm/s, a transverse velocity vt = 5 m/s, and at a detection range of 108 m.

    To further improve the performance of the DF-LDV, a self-mixing DF-LDV (SM DF LDV) is proposed by incorporating the DF-LDV with the SM configuration. Benefitting from the SM configuration, the direction discriminability and high sensitivity are demonstrated. With few μW of optical power backscattered from a diffused target, an SNR of 23 dB is achieved without employing any avalanched photodetector or a photomultiplier tube.

    For radar, the chaos state with the electrical heterodyne technique is utilized to generate multiple orthogonal waveforms for the multiple-input-multiple-output (MIMO) radar application. The correlation between the heterodyned chaos signals are analyzed, which shows that the minimum frequency spacing of local oscillators for obtaining orthogonal heterodyned chaos signals is determined by the correlation time. With a correlation time of several μs, thousands of orthogonal chaos signals can be obtained.

    Furthermore, the electrical heterodyne technique is further extended to improve the quality of the chaos signal generated from a semiconductor laser subject to optical feedback. Through the heterodyne process, the power in the chaos spectrum can be redistributed to elevate the dip in the low frequency region and smooth out the loop frequency peaks. Therefore, the time delay signature (TDS) suppression and bandwidth enhancement can be achieved simultaneously. Compared to the original chaos, the amplitudes of the TDS and the effective bandwidths can be suppressed and enhanced up to 63% and 46% in average, respectively.

    1 Introduction 1.1 Introduction 1.2 Outline of Dissertation 2 Nonlinear Dynamics of Semiconductor Lasers for Photonic Microwave Generation 2.1 Nonlinear Dynamics of Semiconductor Lasers 2.2 Optical Injection for the Generation of P1 States 2.3 Optical Feedback for the Generation of chaos states 3 Dual-Frequency Laser Doppler Velocimeter for Speckle Noise Reduction and Coherence Enhancement 3.1 Introduction of Conventional Single-Frequency Laser Doppler Velocimeter 3.2 Principles of the Dual-Frequency Laser Doppler Velocimeter 3.3 Experimental Setup 3.4 Characterization of the Dual-Frequency Light Source 3.5 Velocity Measurements 3.6 Quantification of Velocity Resolutions 3.6.1 Influence of Speckle Noise 3.6.2 Influence of Optical Phase Noise 3.6.3 Influences of Both Speckle Noise and Optical Phase Noise 3.6.4 Influence of Longitudinal Velocity 3.7 Conclusions 4 Self-Mixing Dual-Frequency Laser Doppler Velocimeter 4.1 Introduction of Self-Mixing Laser Doppler Velocimeter 4.2 Principles of the Self-Mixing Dual-Frequency Laser Doppler Velocimeter 4.3 Experimental Setup 4.4 Velocity Measurement 4.5 Analysis of Signal-to-Noise Ratios 4.6 Speckle Noise Reduction 4.7 Direction Discriminability 4.8 Conclusions 5 Multi-channel Chaos Generation with Electrical Heterodyning for MIMO Radar 5.1 Introduction of MIMO Radar 5.2 Principle of the Electrical Heterodyning for Generation of Orthogonal Chaos Signals 5.3 Numerical Analysis 5.3.1 Characterization of Heterodyned Chaos Signals 5.3.2 Correlation between Heterodyned Chaos Signals 5.3.3 Amount of Orthogonal Chaos Signals 5.4 Experimental Analysis 5.5 Proof-of-Concept Demonstration 5.6 Conclusions 6 Chaos Time Delay Signature Suppression and Bandwidth Enhancement by Electrical Heterodyning 6.1 Characteristics of Chaos Signals Generated from the Optical Feedback System 6.2 Principle of the Electrical Heterodyning for Time Delay Signature Suppression and Bandwidth Enhancement 6.3 Characterization of the Original Chaos 6.4 Analysis of the Heterodyned Chaos 6.5 Analysis of the Mixed Chaos 6.6 Comprehensive Comparison between the Original Chaos, Heterodyned Chaos, and Mixed Chaos 6.7 Conclusions 7 Conclusion 7.1 Summary 7.2 Future Research

    [1] P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids, vol. 42, pp. 495–511, 2007.
    [2] B. Rajan, B. Varghese, T. G. V. Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci., vol. 24, pp. 269–283, 2009.
    [3] R. Gerbach, M. Ebert, G. Brokmann, T. Hein, and J. Bagdahn, “Identification
    of mechanical defects in MEMS using dynamic measurements for application in production monitoring,” Microsyst. Technol., vol. 16, pp. 1251–1257, 2010.
    [4] G. B. Rieker, F. R. Giorgetta, W. C. wanns, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica, vol. 1, pp. 290–298, 2014.
    [5] C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 451–461, 2009.
    [6] A. Luckman, D. Quincey, and S. Bevan, “The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers,” Remote Sens. Environ, vol. 111, pp. 172–181, 2007.
    [7] S. Maresca, P. Braca, J. Horstmann, and R. Grasso, “Maritime surveillance using multiple high-frequency surface-wave radars,” IEEE Trans. Geosci. Remote Sens., vol. 52, pp. 5056–5071, 2014.
    [8] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, 2000.
    [9] J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, pp. 319–330, 2007.
    [10] J. Yao, “Microwave photonics,” J. Lightwave Technol., vol. 150, pp. 314–335, 2009.
    [11] J. J. V. Olmos, T. Kuri, and K. Kitayama, “Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment,” J. Lightwave Technol., vol. 25, pp. 3374–3380, 2007.
    [12] M. J. Crisp, L. Sheng, A.Watts, R. V. Penty, and I. H. White, “Uplink and downlink coverage improvements of 802.11g signals using a distributed antenna network,” J. Lightwave Technol., vol. 25, pp. 3388–3395, 2007.
    [13] J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol., vol. 24, pp. 201–229, 2006.
    [14] D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 861–867, 2006.
    [15] U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, “Multifunctional fiberoptic microwave links based on remote heterodyne detection,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 458–468, 1998.
    [16] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett., vol. 4, pp. 936–938, 1992.
    [17] X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 804–809, 2006.
    [18] J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express, vol. 21, pp. 11475–11481, 2013.
    [19] T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photonics Technol. Lett., vol. 14, pp. 1608–1610, 2002.
    [20] J. Chou, Y. Han, and B. Jalali, “Adaptive RF-Photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett., vol. 15, pp. 581–583, 2003.
    [21] X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Quantum Electron., vol. 17, pp. 1198–1211, 2011.
    [22] D. M. Kane and K. A. Shore, Unlocking dynamical diversity: feedback effects on semiconductor lasers. Wiley, 2005.
    [23] J. Otsubo, Semiconductor Lasers: Stability, Instability, and Chaos. Springer, 2nd ed., 2007.
    [24] F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron., vol. 40, pp. 682–689, 2004.
    [25] R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett., vol. 31, pp. 3600–3602, 2006.
    [26] W. L. Eberhard and R. M. Schotland, “Dual-frequency Doppler-lidar method of wind measurement,” Appl. Opt., vol. 19, pp. 2967–2976, 1980.
    [27] L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. L. Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt., vol. 41, pp. 5702–5712, 2002.
    [28] Y. Tan, S. Zhang, Z. Ren, and C. Ren, “Self-mixing interference effects in orthogonally polarized dual-frequency Nd:YAG lasers at different feedback levels,” Appl. Phys. B: Lasers Opt., vol. 95, pp. 731–737, 2009.
    [29] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 991–997, 2004.
    [30] F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron., vol. 40, pp. 815–820, 2004.
    [31] T. Isogawa, T. Kumashiro, H. J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE Trans. Terahertz Sci. Technol., vol. 2, pp. 485–492, 2012.
    [32] T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeterwave imaging using photonicsbased noise source,” in Proceedings of IEEE International Conference on Infrared Millimeter and Terahertz Waves, 2009.
    [33] H. J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, and Y. Kado, “Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterizations,” IEEE Trans. Microw. Theory Techn., vol. 56, pp. 2989–2997, 2008.
    [34] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express, vol. 18, pp. 26155–26162, 2010.
    [35] A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol., vol. 30, pp. 3420–3426, 2012.
    [36] A. Wang, M. Zhang, H. Xu, and Y. Wang, “Location of wire faults using chaotic signal,” IEEE Electron Device Lett., vol. 32, pp. 372–374, 2011.
    [37] Y. Ji, M. Zhang, Y. Wang, P. Wang, A. Wang, Y. Wu, H. Xu, and Y. Zhang,“Microwave-photonic sensor for remote water-level monitoring based on chaotic laser,” Int. J. Bifurcation Chaos, vol. 24, p. 1450032, 2014.
    [38] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron., vol. 18, pp. 259–264, 1982.
    [39] M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. of Quantum Electron., vol. 23, pp. 9–29, 1987.
    [40] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 974–981, 2004.
    [41] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, pp. 195–205, 2000.
    [42] A. Murakami, J. Ohtsubo, and Y. Liu, “Stability analysis of semiconductor laser with phase-conjugate feedback,” IEEE J. Quantum Electron., vol. 33, pp. 1825–1831, 1997.
    [43] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron., vol. 28, pp. 93–108, 1992.
    [44] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor with delayed negative optoelectronic feedback,” IEEE J. of Quantum Electron., vol. 39, pp. 562–568, 2003.
    [45] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. of Quantum Electron., vol. 37, pp. 329–336, 2001.
    [46] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. of Quantum Electron., vol. 46, pp. 421–428, 2010.
    [47] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonics microwave generation and transmission using direct modulation of stably injection-locked semiconductor laser,” Opt. Commun., vol. 284, pp. 3581–3589, 2011.
    [48] Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J., vol. 3, pp. 644–650, 2011.
    [49] C. C. Cui, X. L. Fu, and S. C. Chan, “Double-locked semiconductor laser for radioover-fiber uplink transmission,” Opt. Lett., vol. 34, pp. 3821–3823, 2009.
    [50] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express, vol. 15, pp. 14921–14935, 2007.
    [51] S. K. Hwang, H. F. Chen, and C. T. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett., vol. 34, pp. 812–814, 2009.
    [52] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. of Quantum Electron., vol. 41, pp. 1142–1147, 2005.
    [53] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett., vol. 31, pp. 2254–2256, 2006.
    [54] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature, vol. 438, pp. 343–346, 2005.
    [55] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics, vol. 2, pp. 728–732, 2008.
    [56] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 30, pp. 957–965, 1994.
    [57] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 16, pp. 972–974, 2004.
    [58] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. 16, pp. 347–355, 1980.
    [59] Y. Yeh and H. Z. Cumming, “Localized fluid flow measurement with a He-Ne laser spectrometer,” Appl. Phys. Lett., vol. 4, pp. 176–178, 1964.
    [60] S. Rothberg, “Numerical simulation of speckle noise in laser vibrometry,” Appl. Opt., vol. 45, pp. 4523–4533, 2006.
    [61] M. Denman, N. Halliwell, and S. Rothberg, “Speckle noise reduction in laser vibrometry experimental and numerical optimization,” in Proc. SPIE, vol. 2868, pp. 12–21, 1996.
    [62] P. Martin and S. Rothberg, “Introducing speckle noise maps for laser vibrometry,” Opt. Lasers Eng., vol. 47, pp. 431–442, 2009.
    [63] J. Vass, R. Smid, R. B. Randall, P. Sovka, C. Cristalli, and B. Torcianti, “Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio application to mechanical fault diagnostics,” Mech. Syst. Sig. Process., vol. 22, pp. 647–671, 2008.
    [64] H. W. Mocker and P. E. Bjork, “High accuracy laser Doppler velocimeter using stable long-wavelength semiconductor lasers,” Appl. Opt., vol. 28, pp. 4914–4919, 1989.
    [65] U. Sharma, G. Chen, J. U. Kang, I. Ilev, and R. W. Waynant, “Fiber optic confocal laser Doppler velocimeter using an all-fiber laser source for high resolution measurements,” Opt. Express, vol. 13, pp. 6250–6258, 2005.
    [66] T. B. Simpson, “Phase-locked microwave-frequency modulations in optically injected laser diodes,” Opt. Commun., vol. 170, pp. 93–98, 1999.
    [67] Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express, vol. 17, pp. 18596–18605, 2009.
    [68] L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas., vol. 53, pp. 223–232, 2004.
    [69] S. K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas., vol. 57, pp. 355–363, 2008.
    [70] L. Rovati, S. Cattini, and N. Palanisamy, “Measurement of the fluid-velocity profile using a self-mixing superluminescent diode,” Meas. Sci. Technol., vol. 22, p. 025402, 2011.
    [71] G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. S283–S294, 2002.
    [72] G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron., vol. 41, pp. 1157–1167, 2005.
    [73] G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of selfmixing interferometry,” IEEE Photonics Technol. Lett., vol. 12, pp. 1028–1030, 2000.
    [74] L. Lu, J. Yang, L. Zhai, R. Wang, Z. Cao, and B. Yu, “Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth,” Opt. Express, vol. 20, pp. 8598–8607, 2012.
    [75] W. Huang, H. Gui, L. Lu, J. Xie, H. Ming, D. He, H. Wang, and T. Zhao, “Effect of angle of incidence on self-mixing laser Doppler velocimeter and optimization of the system,” Opt. Commun., vol. 281, pp. 1662–1667, 2008.
    [76] L. Lu, K. Zhang, J. Dai, J. Zhu, S. Zhen, and B. Yu, “Study of speckle pattern effect for self-mixing laser diodes in vertical-cavity surface-emitting lasers,” Opt. Eng., vol. 49, p. 094301, 2010.
    [77] R. Kliese and A. D. Raki, “Spectral broadening caused by dynamic speckle in selfmixing velocimetry sensors,” Opt. Express, vol. 20, pp. 18757–18771, 2012.
    [78] M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron., vol. 37, pp. 800–806, 2001.
    [79] R. Atashkhooei, S. Royo, and F. J. Azcona, “Dealing with speckle effects in selfmixing interferometry measurements,” IEEE Sens. J., vol. 13, pp. 1641–1647, 2013.
    [80] M. Norgia and S. Donati, “A displacement-measuring instrument utilizing selfmixing interferometry,” IEEE Sens. J., vol. 52, pp. 1765–1770, 2003.
    [81] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express, vol. 20, pp. 20255–20265, 2012.
    [82] S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 1025–1032, 2004.
    [83] Y. H. Liao and F. Y. Lin, “Dynamical characteristics and their applications of semiconductor lasers subject to both optical injection and optical feedback,” Opt. Express, vol. 21, pp. 23568–23578, 2013.
    [84] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela,“MIMO radar: an idea whose time has come,” in Proceedings of IEEE Radar Conference, pp. 71–78, 2004.
    [85] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Process. Mag., vol. 24, pp. 106–114, 2007.
    [86] D. W. Bliss and K. W. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” in Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, pp. 54–59, 2004.
    [87] D. Tarchi, F. Oliveri, and P. F. Sammartino, “MIMO radar and ground-based SAR imaging systems: equivalent approaches for remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 51, pp. 425–435, 2013.
    [88] X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens., vol. 49, pp. 509–518, 2011.
    [89] D. R. Fuhrmann and G. S. Antonio, “Transmit beamforming for MIMO radar systems using partial signal correlation,” in Proceedings of 38th IEEE Asilomar Conference on Signals, Systems and Computers, pp. 295–299, 2004.
    [90] P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE Trans. Signal Process., vol. 55, pp. 4151–4161, 2007.
    [91] Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, pp. 330–343, 2007.
    [92] Y. Yang and R. S. Blum, “Minimax robust MIMO radar waveform design,” IEEE J. Sel. Top. Signal Process., vol. 1, pp. 147–155, 2007.
    [93] C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process., vol. 56, pp. 5926–5936, 2008.
    [94] H. A. Khan and D. J. Edwards, “Doppler problems in orthogonal MIMO radars,” in Proceedings of IEEE Radar Conference, pp. 244–247, 2006.
    [95] W. Q. Wang, “MIMO SAR OFDM chirp waveform diversity design with random matrix modulation,” IEEE Trans. Geosci. Remote Sens., vol. 53, pp. 1615–1625, 2015.
    [96] H. Deng, “Discrete frequency-coding waveform design for netted radar systems,” IEEE Signal Process. Lett., vol. 11, pp. 179–182, 2004.
    [97] H. Deng, “Polyphase code design for orthogonal netted radar systems,” IEEE Trans. Signal Process., vol. 52, pp. 3126–3135, 2004.
    [98] B. Liu, Z. He, and Q. He, “Optimization of orthogonal discrete frequency-coding waveform based on modified genetic algorithm for MIMO radar,” in Proceedings of International Conference on Communications, Circuits and Systems, pp. 966–970, 2007.
    [99] M. S. Willsey, K. M. Cuomo, and A. V. Oppenheim, “Quasi-orthogonal wideband radar waveforms based on chaotic systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, pp. 1974–1984, 2011.
    [100] J. Yang, H. Q. Wang, W. D. Jiang, and Z. W. Zhuang, “Complementary-based chaotic phase-coded waveforms design for MIMO radar,” IET Radar Sonar Navig., vol. 7, pp. 371–382, 2013.
    [101] J. Yang, Z. K. Qiu, X. Li, and Z. W. Zhuang, “Uncertain chaotic behaviours of chaotic-based frequency- and phase-modulated signals,” IET Signal Proc., vol. 5, pp. 748–756, 2011.
    [102] S. Qiao, Z. G. Shi, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res., vol. 75, pp. 225–237, 2007.
    [103] T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W. Z. Cui, W. Ma, and L. Ran,“Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave Colpitts oscillator,” Prog. Electromagn. Res., vol. 90, pp. 15–30, 2009.
    [104] F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron., vol. 40, pp. 1732–1738, 2004.
    [105] Z. G. Shi, S. Qiao, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran,“Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator,” Prog. Electromagn. Res., vol. 77, pp. 1–14, 2007.
    [106] G. Mykolaitis, A. Tamasevicius, and S. Bumeliene, “Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges,” Electron. Lett., vol. 40, pp. 91–92, 2004.
    [107] A. Tamasevicius, G. Mykolaitis, S. Bumeliene, A. Baziliauskas, R. Krivickas, and E. Lindberg, “Chaotic Colpitts oscillator for the ultrahigh frequency range,” Nonlinear Dyn., vol. 46, pp. 159–165, 2006.
    [108] J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Springer, 2007.
    [109] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express, vol. 23, pp. 2308–2319, 2015.
    [110] X. Z. Li and S. C. Chan, “Heterodyne random bit generation using an optically injected semiconductor laser in chaos,” IEEE J. Quantum Electron., vol. 49, pp. 829–838, 2013.
    [111] F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron., vol. 48, pp. 1010–1014, 2012.
    [112] Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron., vol. 19, p. 1500606, 2013.
    [113] F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun., vol. 221, pp. 173–180, 2003.
    [114] D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett., vol. 32, pp. 2960–2962, 2007.
    [115] D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron., vol. 45, pp. 879–891, 2009.
    [116] J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, “Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser,” Opt. Express, vol. 18, pp. 6661–6666, 2010.
    [117] J. G.Wu, G. Q. Xia, and Z. M.Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express, vol. 17, pp. 20124–20133, 2009.
    [118] S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J., vol. 4, pp. 1930–1935, 2012.
    [119] J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun., vol. 282, pp. 3153–3156, 2009.
    [120] K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron., vol. 45, pp. 1367–1379, 2009.
    [121] R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. V. der Sande, “Loss of timedelay signature in chaotic semiconductor ring lasers,” Opt. Lett., vol. 37, pp. 2541–2543, 2012.
    [122] A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron., vol. 39, pp. 1462–1467, 2003.
    [123] A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett., vol. 20, pp. 1633–1635, 2008.
    [124] N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, X. Zou, L. Zhang, and P. Mu, “Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 48, pp. 1339–1345, 2012.
    [125] N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 24, pp. 2187–2190, 2012.
    [126] V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol., vol. 72, pp. 373–377, 2005.
    [127] A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express, vol. 21, pp. 8701–8710, 2013.
    [128] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett., vol. 112, p. 023901, 2014.
    [129] M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett., vol. 105, p. 011122, 2014.
    [130] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable oscillations in optically injected semiconductor lasers with reduced sensitivity to perturbations,” J. Lightwave Technol., vol. 32, pp. 3749–3758, 2014.
    [131] C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations induced by optical injection to a semiconductor laser,” IEEE J. Quantum Electron., vol. 50, pp. 815–822, 2014.
    [132] K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express, vol. 22, pp. 18648–18661, 2014.
    [133] J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization, Opt. Lett., vol. 38, pp. 344–346, 2013.
    [134] T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators ,” IEEE J. Sel. Top. Quantum Electron., vol. 19, p. 1500807, 2013.
    [135] Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett., vol. 34, pp. 1636–1638, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE