簡易檢索 / 詳目顯示

研究生: 許忻瑋
Hsin-Wei Hsu
論文名稱: 船槳性能參數分析之數值研究
Parametric study of marine propeller performance based on numerical simulation
指導教授: 林昭安
Chan-An Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 52
中文關鍵詞: 螺槳效能自動化網格生成歪斜度後傾度弦長葉片數目
外文關鍵詞: propeller efficiency, automatic grid generation, skew, rake, chord length, the number of the propeller blade
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究方向在於建立螺槳之自動化網格分析模組,做為螺槳設計參數最佳化分析的基礎,並結合商用數值分析軟體STAR-CD,進行螺槳單獨性紊流流場分析計算,以中型貨櫃輪的設計螺槳為研究標的,逐一變化各螺槳設計參數:螺槳歪斜度(Skew)、葉片後傾度(Rake)、弦長(Chord length)、葉片數目。經由分析找出兼具高精確度以及節省計算時間效果的適合網格模組,並檢視各參數對單獨螺槳效能的影響。螺槳紊流流場分析除了提供設計需求的性能數據,還可以進一步觀察葉片詳細之流場特性,如葉端渦漩(tip vortex)、導緣(Leading edge)與墊緣(Trailing edge)附近的流場細節,以協助設計者掌握葉面設計細節。藉由本研究可快速建立螺槳網格並協助螺槳最佳化設計及探討勢流分析所無法模擬的螺槳翼端渦流現象。


    The main objective of present study is to develop an automatic grid generation procedure for the parametric performance analysis of the marine propellers. The simulation platform is based on the STAR-CD software to compute the flowfield of the 2695 model propeller provided by the china ship building company. There are also open water tests data available at different advance ratios to allow careful examinations of the prediction capability of the present numerical procedure. Also, CSBC provides simulation results using panel method, which can also be used as supplementary criteria of the results. A series of parametric studies are performed on the model 2695 to explore the influences of the propeller efficiency, which include skew, rake, area ratio (chord length) and the number of the propeller blades. The results indicate that the increase of skew has little effects on the performance of the propeller. However, increase of the rake and chord length do reduce the performance of the propeller, The reduction of blade number, on the other hand, increase the efficiency, however, the thrust of force is reduced due to decrease of the blade number.

    Abstract I Nomenclature IV List of Tables VI List of Figures VI Chapter 1 Introduction 1.1 Introduction ………………………………… 1 1.2 Literature Survey ………………………… 4 1.3 Objective and Motivation ………………… 7 Figures 8 Chapter 2 Propeller Geometry 2.1 Propeller geometry representation………… 10 2.2 Automatic propeller structured grid generation procedure ………………………………………………13 2.3 Setup of computational domain……………… 14 Figures 15 Chapter 3 Mathematical Formulations 3.1 Governing equation …………………………… 22 3.2 Turbulence model ( model) ………………… 24 3.3 Boundary conditions ………………………… 25 Figures 26 Chapter 4 Results and Discussions 4.1 Grid generation and grid independent tests …27 4.2 Validations of the prediction procedure …… 29 4.3 Parametric study of propeller efficiency … 30 Tables 32 Figures 34 Chapter 5 Conclusion and Future Work 5.1 Conclusion ………………………………………… 47 5.2 Future work ………………………………………… 48 Bibliography 50

    [1] 戴堯天, 劉衿友, 陸磐安, “造船原理,” 國立台灣大學造船工程學研究所, (1975).

    [2] E. V. Lewis, “Principles of Naval Architecture,” Jersey City, N.J. :Society of Naval Architects and Marine Engineers, (1988).

    [3] G. Dave, “Propeller Handbook : the Complete Reference For Choosing Installing and Understanding Boat Propellers,” Camden, ME :International Marine, (2001).

    [4] R. A. Cumming, W. B. Morgan and R. J. Boswell, “Highly Skewed Propellers,” Trans. SNAME, Vol.80, (1972).

    [5] J.E. Kerwin, and C. S. Lee, “Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting-Surface Theory,” Trans. SNAME, 86(1978).

    [6] P. E. Griffin, and S. A. Kinnas, “A Design Method for High-Speed Propulsor Blades,” Trans. SNAME, Vol.120,pp.556-562, (1998).

    [7] C. Dai, S. Hambric, and L. Mulvihill, “A Prototype Marine Propulsion Design Tool Using Artificial Intelligence and Numerical Optimization Techniques,” Trans. SNAME 102:57-69, (1994).

    [8] S. Mishima, and S. Kinnas, “Application of a Numerical Optimization Technique to the Design of Cavitating Propellers in Nonuniform Flow,” Journal of Ship Research, (1997).
    [9] T. S. Jang, T. Kinoshita, and H. Yamaguchi, “A New Functional Optimization Method Applied to the Pitch Distribution of a Marine Propeller,” Journal of Marine Science and Technology 6:23-30, (2001).

    [10] Y. Takekoshi, T. Kawamura, H. Yamaguchi, M. Maeda, N. Ishii, K. Kimura, T. Taketani, and A. Fujii, “Study on the Design of Propeller Blade Sections Using the Optimization Algorithm,” Journal of Marine Science and Technology 10:70-81, (2005).

    [11] 陳正泰, 黃正利, 辛敬業, 林忠京, “螺槳葉片特殊葉尖幾何對葉尖流場影響之探討,” 第十八屆中國造船暨輪機工程研討會論文暨, (2006).

    [12] G. Kuiper, “Cavitation Research and Ship Propeller Design,” Applied Scientific Research, Vol.58,pp.33-50, (1998).

    [13] V. Bertram, “Practical Ship Hydrodynamics,” Oxford: Butterworth-Heinemsnn, (2000).

    [14] T. Watanabe, T. Kawamura, Y. Takekoshi, M. Maeda, S. H. Rhee, “Simulation of Steady and Unsteady Cavitation on a Marine Propeller Using a RANS Code,” Fifth International Synposium on Cavitation, pp.1-8, (2003).

    [15] J. S. Carlton, “Marine Propellers and Propulsion,” Oxford: Butterworth-Heinemann, (1994).

    [16] B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Comp. Meth. in Appl. Mech. and Eng., 3, pp. 269–289, (1974).

    [17] SV. AA. HARVALD, “Resistance and Propulsion of Ships,” Malabar, Fla. :Krieger Pub.,1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE