簡易檢索 / 詳目顯示

研究生: 林栢楓
Lin, Bo-Feng
論文名稱: 使用蟻群最佳化演算法自動搜尋壓水式反應器爐心佈局
Automatic Pressurized Water Reactor Loading Pattern Design Using Ant Colony Algorithms
指導教授: 林強
Lin, Chaung
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: 蟻群演算法壓水式反應器排序蟻群系統燃料佈局
外文關鍵詞: Ant Colony Algorithm, pressurized power reactor, MMAS, RAS, Ant-Q, loading pattern
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓水式反應器在運轉一定期間後,就須執行燃料再裝填工作。以往是藉由核子工程師的專家經驗來完成燃料佈局設計,近幾年因計算機發展迅速,使得由電腦程式來搜尋最佳化燃料佈局變得可能。蟻群演算法為一種群智能演算法,適合用於搜尋離散最佳化問題,本研究即以此演算法的三種衍生方法:Rank-Based Ant System(RAS)、Max-Min Ant System(MMAS)及Ant-Q搜尋壓水式反應器燃料佈局,並以馬鞍山核電廠一號機第17、18、19週期廠家排列佈局驗證結果。
    設計燃料佈局時,需考慮到安全及經濟因素,在符合安全的條件下,追求最佳的經濟效益。壓水式反應器燃料佈局主要的安全考量有熱通道因子及緩和劑溫度係數,經濟方面的考量為在不違反安全限值的條件下追求較高的週期長度或以較少的燃料束達到能符合能量需求的燃料佈局。壓水式反應器爐心內呈八分之一對稱,針對此對稱模式,研究分兩階段進行,第一階段進行八分之一區域內的位置調換最佳化,第二階段進行區域間的旋轉調換最佳化。
    本研究之自動化程式以C語言編寫,利用三維節點爐心模擬程式SIMULATE-3計算爐心狀態。本研究的成果顯示,以台灣馬鞍山核電廠一號機19週期為驗證目標,RAS、MMAS、Ant-Q皆能搜尋到符合安全限值的燃料佈局,在多次重複搜尋的平均中以MMAS表現較好,Ant-Q與RAS表現差不多。再以馬鞍山核電廠一號機17及18週期驗證也能搜尋出符合限值的燃料佈局,證明此自動化工具可適用於其它週期。最後將18週期其中4根燃料束的濃縮度降低,並搜尋出週期長度能夠達到能量需求目標的燃料佈局,使此工具可運用在節省燃料的佈局設計。本研究並在搜尋中以平行運算以節省搜尋所需時間。


    In a pressurized water reactor (PWR), the fuel assemblies must be reloaded after operating a period of time. Loading pattern (LP) was designed by engineer based on experience. Because the computer capability is greatly improved in recent years, it is possible to search loading pattern using some algorithms. Ant Colony System is a metaheuristic method which is efficient to combinatorial optimization problem. In this study, three kinds of algorithms, i.e., Rank-Based System (RAS), Max-Min Ant System (MMAS), Ant-Q was adopted to search loading pattern of PWR. Maanshan nuclear power plant cycle 17,18 and 19 was applied to demonstrate the capability of the algorithms.
    Safety and economy must be considered in loading pattern design. The main safety constraints include hot channel factor (FΔH) and moderator temperature coefficient (MTC) and the economic consideration is cycle length and cost of fuel. The LP was mirror symmetry in quarter-core and quarter-core rotational symmetry in the full core. The search procedure contained two steps. The first step was to permute fuel assemblies (FA) in 1/8 region and the second step was to perform rotation configuration of these FAs.
    The developed program was coded with C. SIMULATE-3 code was used to calculate core status. In Maanshan Cycle 19 case, most of the loading patterns searched by RAS, MMAS and Ant-Q satisfied the safety limits. Generally speaking, MMAS had better performance. The results of Maanshan Cycle 17, 18 also satisfied safety limits, which showed this tool can be applied to other cycles. In addition, the design whose four FAs were placed by lower enrichment FAs also reached the target cycle length. Also, parallel computing was tested to reduce computation time.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 目的 1 1.2 文獻回顧 1 1.3 方法 2 第二章 蟻群最佳化演算法 3 2.1 原理 3 2.2 選擇機制 4 2.3 費洛蒙更新 5 2.4 蟻群演算法之形式 6 2.4.1 Rank-based Ant System(RAS) 6 2.4.2 Max-Min Ant System (MMAS) 6 2.4.3 Ant-Q 7 第三章 壓水式反應器爐心燃料佈局設計 10 3.1 爐心介紹 10 3.2 燃料束組成 12 3.3 佈局設計要求 14 3.3.1 熱通道因子 14 3.3.2 緩和劑溫度係數 16 3.3.3 週期長度 16 第四章 研究方法 17 4.1 第一階段:位置最佳化 17 4.1.1 解的建構 17 4.1.2 品質函數 20 4.1.3 啟發式訊息 21 4.1.4 費洛蒙更新 22 4-2 第二階段:旋轉組態最佳化 25 第五章 結果與討論 27 5-1 程式設計流程 27 5.2 核三廠一號機19週期三種方法搜尋結果 28 5.2.1 RAS 28 5.2.2 Max-Min Ant System 35 5.2.3 Ant-Q 42 5.2.4 方法比較 49 5.3 其他週期搜尋結果 52 5.3.1 核三廠一號機18週期 52 5.3.2 核三廠一號機17週期 54 5.4 節省新燃料濃縮度 56 5.4.1 四根濃縮度4.95換成4.6 56 5-5 平行運算 57 第六章 結論與未來工作 60 6.1 結論 60 6.2 未來工作 61 參考文獻 62 附錄A 三種方法重複執行燃料佈局 66 附錄B 馬鞍山一號機週期18 69 附錄C 馬鞍山一號機週期17 71 附錄D 馬鞍山1號機18週期降低濃縮度 73

    1. Liana Machado and Roberto Schirru, “The Ant-Q algorithm applied to the nuclear reload problem”, Annals of Nuclear Energy, 29 (2002) 1455-1470.
    2. Fabrice Hoareau, “Loading pattern optimization using ant colony algorithm”, International Conference on the Physics of Reactors “Nuclear Power: A Sustainable Resource” Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008.
    3. Alan M.M. de Lima, Roberto Schirru, Fernando Carvalho da Silva, José Antonio Carlos Canedo Medeiros, “A nuclear reactor core fuel reload optimization using artificial ant colony connective networks”, Annals of Nuclear Energy, 35 (2008) 1606-1612.
    4. Chang Lin, Jiing-Iuan Yang, Kuan-Jan Lin, and Zheng-De Wang, “Pressurized Water Reactor Loading Pattern Design Using the Simple Tabu Search”, Nuclear Science and Engineering: 129, 61-71 (1998).
    5. Kuan-Jan Lin and Chaung Lin, “Pressurized Water Reactor Reload Design by an Expert System”, Nuclear Science and Engineering: 130, 128-140 (1998).
    6. Wu Hongchun, “Pressurized reactor reloading optimization using genetic algorithms”, Annals of Nuclear Energy, 28 (2001) 1329-1341.
    7. Adem Erdoğan and Melih Geçkinli, “A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms”, Annals of Nuclear Energy, 30 (2003) 35-53.
    8. 顏維廷,「利用蟻群最佳化演算法自動搜尋沸水式反應器之升載路徑」,國立清華大學工程與系統科學系,碩士論文,中華民國98年。
    9. 王政德,「沸水式反應器爐心佈局自動化設計工具之研究」,國立清華大學工程與系統科學系,博士論文,中華民國97年。
    10. Yoko Kobayashi and Eitaro Aiyoshi, “Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm”, Nuclear Science and Engineering: 142, 119-139 (2002).
    11. Anderson Alvarenga de Moura Meneses, Luca Maria Gambardella, Roberto Schirru, “A new approach for heuristic-guided search in the In-Core Fuel Management Optimization”, Progress in Nuclear Energy, 52 (2010) 339-351.
    12. Jorge Luiz C. Chapot, Fernando Carvalho Da Silva, Roberto Schirru, “A new approach to the use of genetic algprithms to solve the pressurized water reactor’s fuel management optimization problem”, Annals of Nuclear Energy, 26 (1999) 641-655.
    13. Andries P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Willy & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2005.
    14. Anderson Alvarenga de Moura Meneses, Marcelo Dornellas Machado, Roberto Schirru, “Particle Swarm Optimization applied to the nuclear reload problem of a Pressurized Water Reactor”, Progress in Nuclear Energy, 51 (2009) 319-326.
    15. Akio Yamamoto, Hidefumi Noda, Nobuaki Ito, Taiji Maruyama, “INSIGHT: An Integrated Scoping Analysis Tool for In-core Fuel Management of PWR”, Journal of Nuclear Science and Technology, Vol.34, No. 8, (1997) 847-855.
    16. Christian Blum, “Ant colony optimization: Introduction and recent trends” , Physics of Life Reviews , 2 (2005) 353-373.
    17. Roberto P. Domingos and Roberto Schirru, “Particle Swarm Optimization in Reactor Core Design”, Nuclear Science and Engineering: 152, (2006) 197-203.
    18. Jose Antnio Carlos Medeiros, Roberto Schirru, “Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm” Annals of Nuclear Energy, 35 (2008) 576-582.
    19. A.K. Ziver, C.C Pain, J.N. Carter, C.R.E de Oliveira, A.J.H. Goddard, R.S. Overton, “Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors” , Annals of Nuclear Energy, 31 (2004) 431-457.
    20. Marcel Waintraub, Roberto Schirru, Cláudio M.N.A. Pereira, “Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear engineering problems” , Progress in Nuclear Energy, 51 (2009) 680-688.
    21. J.G. Stevens, K.S. Smith, K.R. Rempe, “Optimization of Pressurized Water Reactor Shuffling by Simulated Annealing with Heuristic”, Nuclear Science and Engineering: 121, 67-88 (1995).
    22. David J. Kropaczek, Paul J. Turinsky, “In-Core Nuclear Fuel Management Optimization For Pressurized Water Reactors Utilizing Simulated Annealing”, Nuclear Technology, 95 (1991) 9-31 .
    23. Fatih Alim, Kostadin Ivanov , Samuel H. Levine, “New genetic algorithms (GA) to optimize PWR reactors Part I: Loading pattern and burnable poison placement optimization techniques for PWRs”, Annals of Nuclear Energy, 35 (2008) 93–112.
    24. Y.P. Mahlers, “Core reload optimization for equilibrium cycles using simulated annealing and successive linear programming”, Annals of Nuclear Energy 29 (2002) 1327–1344.
    25. A.H. Fadaei , S. Setayeshi, “LONSA as a tool for loading pattern optimization for VVER-1000 using synergy of a neural network and simulated annealing”, Annals of Nuclear Energy 35 (2008) 1968–1973.
    26. Fatih Alim , Kostadin N. Ivanov , Serkan Yilmaz , Samuel H. Levine, “New genetic algorithms (GA) to optimize PWR reactors Part II: Simultaneous optimization of loading pattern and burnable poison placement for the TMI-1 reactor”, Annals of Nuclear Energy 35 (2008) 113–120.
    27. Davood Badazadeh, Mehrdad Boroushaki, Caro Lucas, “Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)”, Annals of Nuclear Energy 36 (2009) 923–930.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE