簡易檢索 / 詳目顯示

研究生: 柯佳佑
Chia-Yu Ko
論文名稱: 建立於元件電流波形特性之壓降估算
IR Drop Estimation Based on Cell Current Waveform Characterizations
指導教授: 劉靖家
Jing-Jia Liou
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 44
中文關鍵詞: 壓降電源網路電源供應雜訊
外文關鍵詞: IR drop, power network, power supply noise
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著超大型積體電路的複雜度愈來愈高,以及電源供應網路的電流密度持續增加,使得電源供應電壓的壓降(IR drop)問題日益嚴重,而這個問題會造成整個電路性能的降低。現今用於估算電源電壓壓降(或電源供應雜訊)的電源模型多半因為忽略輸入樣式、元件電流波形以及元件位置而使得其準確性不足,或者其方法需要耗費太多的時間。在本論文中,我們提出一個建立於元件電流波形特性的電源格網分析方法來估算電源電壓的壓降。在實作上,我們會藉由HSPICE的模擬來建立一個元件特性庫用以儲存各個元件於不同輸入樣式時的延遲、斜率以及電流波形。再者,在邏輯模擬以及元件特性指派後,我們會考慮每個元件波形及其位於電源網路上的位置來決定代表每個元件的電流源為何。最後,我們會利用一個一階疊代法去估算在電源網路上的最大電壓壓降。此外,由於電源壓降會影響元件原本的延遲,因此我們的方法有個迴授迴圈,並於其中利用更新過的元件延遲來重新計算電源上的壓降。根據實驗數據顯示,我們的模擬器的速度至少比現今常見的電路層級模擬軟體Nanosim快上10000倍,且平均誤差僅僅只有7.98%。另外,我們也會展現電壓壓降在掃瞄測試以及隨機樣式模擬的壓降估算及最長路徑電路延遲增加率於不同電源網路品質下之實驗結果。


    IR drop has become a critical issue recently because of the increase in the circuit size and supply
    current density, and it will degrade the circuit performance. The present power models for IR
    drop (or power supply noise) estimation usually lack accuracy due to neglect of input patterns, cell
    current waveform and cell location, or they cost too much time for larger circuits. In this thesis, we
    propose a power grid analysis method based on cell current waveform characterizations to estimate
    the maximum IR drop. In the process, we create the cell characterization library considering delay,
    slope, and current waveform with different input patterns by HSPICE simulation. Furthermore, we
    consider each cell current waveform and cell location to determine the current source for each cell
    after logic simulation and cell characterization assignment. Finally, we use a first-order iterative
    method to calculate the maximum IR drop in the power network. Additionally, our method has
    an extra feedback loop to recalculate the IR drop by the modified cell delay because IR drop will
    affect the original cell delay. The experimental results show that our simulator is at least 10000
    times faster than Nanosim, a common circuit-level simulator, and the average error is only about
    7.98%. In addition, we also show the results of maximum IR drop estimation and longest path
    delay increase for scan test and random pattern simulation by different qualities of power network.

    1 Introduction 6 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Overview of Power Supply Noise and IR Drop . . . . . . . . . . . . . . . . . . . . 6 1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 The Problem of IR Drop Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 The Method for Creating the Library of Cell Characterization 10 2.1 Overview of the Flow for Library Creation . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Obtainment of Cell Information by HSPICE Simulation . . . . . . . . . . . . . . . 13 2.3 Library Creation for Standard Cells . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 The Proposed IR Drop Estimation Method 16 3.1 Overview of the Flow for Proposed Method . . . . . . . . . . . . . . . . . . . . . 16 3.2 Cell Characterization Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 IR Drop Estimation by First-Order Iterative Method . . . . . . . . . . . . . . . . . 21 3.4 The Method for Improving Performance . . . . . . . . . . . . . . . . . . . . . . . 24 4 Experimental Results 28 4.1 Comparison with Common Circuit-Level Simulator . . . . . . . . . . . . . . . . . 28 4.2 Maximum IR Drop Estimation for Scan Test . . . . . . . . . . . . . . . . . . . . . 30 4.3 Maximum IR Drop Estimation for Random Pattern Simulation . . . . . . . . . . . 35 4.4 Longest Path Delay Increase Due to IR Drop . . . . . . . . . . . . . . . . . . . . 36 5 Conclusion and Future Work 40 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    [1] Y. M. Jiang and K. T. Cheng, “Analysis of performance impact caused by power supply noise
    in deep submicron devices,” Proceedings of Design Automation Conference, pp. 760–765,
    June 1999.
    [2] D. Kouroussis, R. Ahmadi, and F. N. Najm, “Worst-case circuit delay taking into account
    power supply variations,” Proceedings of Design Automation Conference, pp. 652–657, 2004.
    [3] M. Shao, Y. Gao, L. P. Yuan, and M. D. F. Wong, “IR drop and ground bounce awareness
    timing model,” Proceddings of the IEEE Computer Society Annual Symposium on VLSI, pp.
    226–231, May 2005.
    [4] Y. Zhong and M. D. F. Wong, “Fast algorithm for IR drop analysis in large power grid,”
    Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 351–
    357, Nov. 2005.
    [5] J. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-like technique for power grid analysis,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.
    1148–1160, Oct. 2002.
    [6] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random walks in a supply network,” Proceedings
    of Design Automation Conference, pp. 93–98, June 2003.
    [7] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda, “A stochastic approach to
    power grid analysis,” Proceedings of Design Automation Conference, pp. 171–176, 2004.
    [8] C. Tirumurti, S. Kundu, S. Sur-Kolay, and Y. S. Chang, “A modeling approach for addressing
    power supply switching noise related failures of integrated circuits,” Proceedings of Design,
    Automation and Test in Europe, pp. 1078–1083, Feb. 2004.
    [9] Y. S. Chang, S. K. Gupta, and M. A. Breuer, “Analysis of ground bounce in deep sub-micron
    circuits,” Proceedings of IEEE VLSI Test Symposium, pp. 110–116, Apr. 1997.
    [10] Y. S. Chang, S. K. Gupta, and M. A. Breuer, “Test generation for maximizing ground bounce
    considering circuit delay,” Proceedings of IEEE VLSI Test Symposium, pp. 151–157, Apr.
    2003.
    [11] P. Heydari and M. Pedram, “Ground bounce in digital VLSI circuits,” IEEE Transactions on
    VLSI Systems, pp. 180–193, Aug. 2003.
    [12] M. Badaroglu, P. Wambacq, G. Van der Plas, S. Donnay, G. G. E. Gielen, and H. J. De Man,
    “Digital ground bounce reduction by supply current shaping and clock frequency Modulation,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.
    65–76, Jan. 2005.
    [13] Y. M. Jiang and K. T. Cheng, “Vector generation for power supply noise estimation and
    verification of deep submicron designs,” IEEE Transactions on VLSI Systems, pp. 329–340,
    Apr. 2001.
    [14] A Krstic, Y. M. Jiang, and K. T. Cheng, “Pattern generation for delay testing and dynamic
    timing analysis considering power supply noise effects,” IEEE Transactions on Computer-
    Aided Design of Integrated Circuits and Systems, pp. 416–425, Mar. 2001.
    [15] M. Nourani, M. Tehranipoor, and N. Ahmed, “Pattern generation and estimation for power
    supply noise analysis,” Proceedings of IEEE VLSI Test Symposium, pp. 439–444, May 2005.
    [16] S. Pant and D. Blaauw, “Static timing analysis considering power supply variations,” Proceedings
    of IEEE/ACM International Conference on Computer-Aided Design.
    [17] S. Bodapati and F. N. Najm, “High-level current macro-model for power-grid analysis,”
    Proceedings of Design Automation Conference, pp. 385–390, June 2002.
    [18] J.Wang, X. Lu,W. Qiu, Z. Yue, S. Fancler,W. Shi, and D. M. H.Walker, “Static compaction
    of delay tests considering power supply noise,” Proceedings of IEEE VLSI Test Symposium,
    pp. 235–240, May 2005.
    [19] Y. M. Jiang, A. Krstic, and K. T. Cheng, “Estimation of maximum instantaneous current
    through supply lines for CMOS circuits,” IEEE Transactions on VLSI Systems, pp. 61–73,
    Feb. 2000.
    [20] C. T. Hsieh, J. C. Lin, and S. C. Chang, “A vectorless estimation of maximum instantaneous
    current for sequential circuits,” IEEE Transactions on Computer-Aided Design of Integrated
    Circuits and Systems, pp. 2341–2352, Nov. 2006.
    [21] S. Nazarian, M. Pedram, E. Tuncer, and T. Lin, “CGTA: current gain-based timing analysis
    for logic cells,” Proc. of ASP-DAC, p. 6pp, Jan. 2006.
    [22] S. Nazarian and M. Pedram, “Cell delay analysis based on rate-of-current change (ROCC),”
    Proceedings of Design, Automation and Test in Europe, pp. 1–6, Mar. 2006.
    [23] S. Bodapati and F. N. Najm, “High-level current macro-model for logic blocks,” IEEE
    Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 837–855,
    May 2006.
    [24] H. Kriplani, F. N. Najm, and I. N. Hajj, “Pattern independent maximum current estimation
    in power and ground buses of CMOS VLSI circuits: algorithms, signal correlations, and
    their resolution,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
    Systems, pp. 998–1012, Aug. 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE