研究生: |
顧 瑜 Ku, Yu |
---|---|
論文名稱: |
Ta至HfNbTaTiZr等莫耳體心立方系列合金巨觀機械性質之研究 Study on Macro-scale Mechanical Properties of Body-centered Cubic Equimolar Alloys from Ta to HfNbTaTiZr |
指導教授: |
林樹均
Lin, Su-Jien |
口試委員: |
張守一
Chang, Shou-Yi 洪健龍 Hong, Jian-Long 李勝隆 Lee, Sheng-Long |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 146 |
中文關鍵詞: | 高熵合金 、耐火高熵合金 、機械性質 、高溫拉伸 |
外文關鍵詞: | High-entopy Alloys, Refractory High Entropy Alloys, Mechanical Properties, High-temperature Tensile Test |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對含有不同元素數目等原子比的BCC系列合金之巨觀性質進行研究,目的為觀察合金從低熵到高熵的變化趨勢,探討高熵固溶、遲緩擴散、晶格扭曲及雞尾酒共四大核心效應在多主元素合金中,對機械性質的影響與具體表現。2011年首次發表的BCC耐火高熵合金HfNbTaTiZr因為在室溫壓縮試驗中同時具有良好的強度與極佳的延展性而受到注目,雖然其理論熔點較低導致高溫表現普通,但仍為極有代表性的耐火高熵合金之一,故選擇以此合金做為高熵性質的研究主體。設計Ta至HfNbTaTiZr,一元至五元等莫耳的系列合金,除為維持合金均為單一BCC結構,添加元素順序安排熔點由高至低,命名為1B到5B,均進行相同的製程與測試以作為對照。以真空電弧融煉製備系列合金之長條鑄錠後,在室溫下冷輥軋至厚度縮減量70%,而後封於真空石英封管中,在700度至1300度每間隔50度進行退火處理,皆持溫一小時,以水淬冷卻,並進行金相觀察、硬度測試、結構分析、掃描式電子顯微鏡分析與常溫至高溫的拉伸測試。研究結果顯示,增加元素種類後有明顯固溶強化效應,3B至5B鑄造硬度均大於300 HV。再結晶溫度隨著元素數目增加有先升後降的趨勢,應是增加其他元素提高了擴散阻礙以及降低整體熔點增進擴散能力兩者的影響。4B與5B在中溫區間退火後有析出的情形,但在更高的溫度熱處理後合金就呈現單相,為高熵效應可降低自由能、穩定固溶相的展現。在常溫及高溫拉伸中,系列合金的降伏強度均隨溫度提高而下降,5B則因具有遲緩擴散效應與高熵效應,在除了常溫以外的測試中,強度數值均為系列合金中最高,高溫與常溫的降伏強度比值亦為最高。系列合金隨溫度提高後的延展性趨勢為先降後升,推測延性下降原因在低熵系統中應為動態應變時效,中熵及高熵系統中則推測是因為原子重排形成結構短程有序及析出。到800度延性提升則可能是因為發生了動態再結晶。本研究中首次對耐火高熵合金HfNbTaTiZr成功地進行了多個溫度在大氣環境中的高溫拉伸試驗,亦對合金高熵化後巨觀的物理與機械性質有了初步的分析,未來以本研究成果為基礎,藉由更精密之儀器與不同條件可深入探討多主元素之合金在高溫變形時與傳統合金機制的差異。
High-entropy alloys (HEAs) consist of five or more principle elements, creating a new era of metallic materials other than conventional alloys. Four core effects including high entropy-caused solid-solution formation, sluggish diffusion, lattice distortion and cocktail effect assist HEAs in demonstrating several superior properties. Refractory high alloy is a subclass of HEAs, and has been viewed as a promising candidate for replacing advanced Ni-based superalloy in aerospace and elevated-temperature application. Among them, single-phase body-centered cubic (BCC) HfNbTaTiZr possesses good strength and excellent ductility in uniaxial compression test at room temperature, and thus has drawn great attention since publication. Most of the recent researches on HEAs focus mainly on alloy design and fabrication. There is still very limited research on the deformation mechanism of them.
The objective of this research is to investigate the difference between low-entropy system and high-entropy one in mechanical properties and their evolution in macro-scale mechanical tests. A series of alloy were designed and investigated in this research, from one component to five with each element in equimolar chemical composition. The alloy ingots were prepared by vacuum arc-melting, and then cold rolled to thickness reduction 70%. Subsequent heat treatment with annealing temperature ranging from 700 C to 1300 C for 1 hour followed by water quenching were conducted. Analysis includes metallurgic observation, hardness test, crystal structure and electronic microscopy. Tensile tests at room temperature, 400 C, 600 C and 800 C were performed in air. Pronounced solid solution strengthening phenomenon had shown while the number of elements in the system increased. Alloy composed of more than four elements would precipitate at intermediate temperatures, and become single phase at higher temperatures, which further confirm high-entropy effect. In tensile tests, the yield strength of BCC-series alloys decreased with rising temperature. HfNbTaTiZr with highest configurational entropy had the highest yield strength values in all elevated-temperature tests, suggesting the sluggish diffusion effect and high entropy effect could enable the structure to be more stable than low entropy system.
[1] J. W. Yeh, S. J. Lin, S. K. Chen, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
[2] O. N. Senkov, J. M. Scott, S. V. Senkova, D.B. Miracle, and C. F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
[3] J. W. Yeh, Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006. 31(6): p. 633-648.
[4] J. W. Yeh, Physical Metallurgy of High-Entropy Alloys. Jom, 2015. 67(10): p. 2254-2261.
[5] J.W. Yeh, Physical Metallurgy, in High-Entropy Alloys. 2016. Springer, p. 51-113.
[6] Y. Zhang, J. P. Lin, Y. J. Zhou, G. L. Chen and P. K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
[7] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238.
[8] K.Y. Tsai, J .W. Yeh and M. H. Tsai, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
[9] A. Hohenwarter, B. Gludovatz, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): p. 1153-8.
[10] G. B. Wilks, O. N. Senkov, J. M. Scott and D. B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
[11] J. W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013. 65(12): p. 1759-1771.
[12] 張嘉修, 耐火高熵合金AlxHfNbTaTiZr(x=0, 0.3, 0.5, 0.75, 1.0)之研究, 2011, 國立清華大學材料科學工程學系碩士論文.
[13] 張政泓, 耐火高熵合金Mo-Nb-Ti-Zr添加Al、Cr與Si對微結構及性質之影響, 2016, 國立清華大學材料科學工程學系碩士論文.
[14] 曾可凱, 新型耐火高熵合金在核能結構材料之研究及開發, 2015, 國立清華大學材料科學工程學系碩士論文.
[15] 李立陽, 耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr 添加Si與Ni對微結構及性質影響之研究, 2015, 國立清華大學材料科學工程學系碩士論文.
[16] 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響, 2013, 國立清華大學材料科學工程學系碩士論文.
[17] 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究, 2014, 國立清華大學材料科學工程學系碩士論文.
[18] 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討, 2015, 國立清華大學材料科學工程學系博士論文.
[19] O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, Development and exploration of refractory high entropy alloys—A review. Journal of Materials Research, 2018. 33(19): p. 3092-3128.
[20] D. J. Bacon, G. E. Dieter, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York.
[21] M. R. Chen, C. J. Tong, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun and S. Y. Chang, Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(5): p. 1263-1271.
[22] M. H. Tsai, C. C. Juan, C. W. Tsai, W. L. Hsu, C. M. Lin, S. K. Chen, S. J. Lin and J. W. Yeh, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Materials Letters, 2016. 184: p. 200-203.
[23] A. L. Pilchak, O. N. Senkov and S. L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy. Metallurgical and Materials Transactions A, 2018. 49(7): p. 2876-2892.
[24] Cornelis Tuijn Gerhard Neumann, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data, 1st edition. 2009.
[25] G. M. Hood, H. Zou, R. J. Schultz, N. Matsuura, J. A. Roy and J. A. Jackman, Diffusion of Hf and Nb in Zr-19%Nb. Journal of Nuclear Materials, 1996. 230(1): p. 36-40.
[26] S. L. Semiatin, O. N. Senkov, Microstructure and properties of a refractory high-entropy alloy after cold working. Journal of Alloys and Compounds, 2015. 649: p. 1110-1123.
[27] S. Ni, W. Wu, Y. Liu and M. Song, Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. Journal of Materials Research, 2016. 31(24): p. 3815-3823.
[28] B. Völker, B. Schuh, J. Todt, N. Schell, L. Perrière, J. Li and J. P. Couzinié, A. Hohenwarter, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Materialia, 2018. 142: p. 201-212.
[29] Y. Tong, S. Y. Chen, K. K. Tseng, J. W. Yeh, J. D. Poplawsky, J. G. Wen, M. C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W. D. Li and P. K. Liaw, Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scripta Materialia, 2019. 158: p. 50-56.
[30] N. Yu Yurchenko, N. D. Stepanov, S. V. Zherebtsov, M. A. Tikhonovsky and G. A. Salishchev, Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 2018. 211: p. 87-90.
[31] V. Raju, R. R. Eleti, M. Veerasham, S. R. Reddy and P. P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Materials Characterization, 2018. 136: p. 286-292.
[32] J. M. Scott, O. N. Senkov, S. V. Senkova, F. Meisenkothen, D. B. Miracle and C. F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074.
[33] T. Bhattacharjee, R. E. Rajeshwar, A. Shibata and N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy. Acta Materialia, 2019. 171: p. 132-145.
[34] C.N. Reid, W.S. Owen, Deformation Geometry for Materials Scientists: International Series on Materials Science and Technology. 2016: Elsevier Science.
[35] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena. 2012: Elsevier Science.
[36] S. X. Li, G. R. Cui, Dependence of strength, elongation, and toughness on grain size in metallic structural materials. Journal of Applied Physics, 2007. 101(8).
[37] A. Inoue, A. Takeuchi, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.
[38] J. B. Nelson, D. P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proceedings of the Physical Society, 1945. 57(3): p. 17.
[39] A. A. Smith, J. S. Smart, Effect of Phosphorus, Arsenic, Sulphur and Selenium on Some Properties of High-purity Copper. AIME TRANS, 1946. 166: p. 144-155.
[40] G. T. Gray, S. R. Chen, Constitutive behavior of tantalum and tantalum-tungsten alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1996. 27(10): p. 2994-3006.
[41] J. H. Bechtold Tensile Properties of Annealed Tantalum at Low Temperatrues. Acta Metallurgica, 1955. 3: p. 249-254.
[42] R. W. Armstrong, F. J. Zerilli, Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 1990. 68(4): p. 1580-1591.
[43] Jr. R. W. Buckman, New applications for Tantalum and tantalum alloys. 2000. 52(3): p. 40-41.
[44] R. Kapoor S. Nemat-Nasser, Deformation behavior of tantalum and a tantalum tungsten alloy. International Journal of Plasticity, 2001. 17(10): p. 1351-1366.
[45] W. Guo, S. Nemat-Nasser, Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Materials Science and Engineering: A, 2000. 284(1-2): p. 202-210.
[46] R. D. Doherty, F. J. Humphreys D. A. Hughes, J. J. Jonas, D. J. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen and A. D. Rollett, Current issues in recrystallization: a review. Materials Science and Engineering: A, 1997. 238(2): p. 219-274.
[47] R. E. Logé, K. Huang, A review of dynamic recrystallization phenomena in metallic materials. Materials & Design, 2016. 111: p. 548-574.
[48] Y. J. Chen, M. A. Meyers, F. D. S. Marquis and D. S. Kim, High-strain, high-strain-rate behavior of tantalum. Metallurgical and Materials Transactions A, 1995. 26(10): p. 2493-2501.
[49] B. G. Clark, B. L. Boyce, P. Lu, J. D. Carroll and C. R. Weinberger, The Morphology of Tensile Failure in Tantalum. Metallurgical and Materials Transactions A, 2013. 44(10): p. 4567-4580.
[50] 莊東漢, 材料破損分析. 2009: 五南圖書出版股份有限公司.
[51] S. Hanada, M.S. Kim, S. Watanabe and O. Izumi, Effects of temperature and grain size on deformation and fracture in recrystallized Ni3Al doped with boron. Journal of Materials Science, 1990. 25(3): p. 1590-1597.