研究生: |
劉泓志 |
---|---|
論文名稱: |
以超臨界CO2合成奈米石墨烯片/奈米碳管/環氧樹脂複合材料 Preparation of Graphene Nanoplatelets/Carbon Nanotubes/Epoxy Composites Using SCCO2 Assisted Mixing |
指導教授: | 談駿嵩 |
口試委員: |
賴慶智
陳郁文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 超臨界CO2 、奈米石墨烯片 、複合材料 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的奈米高分子複合材料在製備上有著奈米材料容易自身聚集、混摻中需加入大量的有機溶劑降低環氧樹脂黏度、分散後膠體需藉由加熱方法移除溶劑,進而產生聚集現象以及殘留溶劑會影響複材使用壽命等缺點。本研究利用超臨界CO2技術取代有機溶劑,應用到奈米石墨烯片與環氧樹脂複合材料混摻上,亦探討與奈米碳管共同混摻的影響,以改善上述缺點。超臨界CO2對高分子而言是一個很好的膨潤劑,可透過控制溫度及壓力來決定膨脹程度的多寡,並降低環氧樹脂黏度,使石墨烯片更均勻地分散在環氧樹脂中;同時研究中共混摻奈米碳管,藉由碳管長鏈狀構造在鄰近的石墨烯片之間架橋,防止石墨烯片聚集,使石墨烯片與環氧樹脂間有更大的接觸面積。研究中藉由超臨界CO2進行奈米石墨烯片/奈米碳管/環氧樹脂之混摻,慢速洩壓後可得均勻分散之膠體。此膠體加入適量比例之硬化劑,並以固定的溫度梯度進行固化反應後,可得奈米複合材料。在性質檢測方面,碳材表面結構及碳材於複合材料中的分散情形,利用穿透式和掃瞄式電子顯微鏡加以鑑定。此外,針對複合材料之電導率、彈性模數以及熱傳係數進行量測。實驗結果顯示,在單獨混摻奈米石墨烯片的操作中,當超臨界CO2操作條件為1500 psi、40 oC及混摻濃度為11.7 wt%時,電導率可達1.1×10-7 S/cm;當與奈米碳管共同混摻後,在石墨烯片與碳管混摻比例為1:3時,複合材料的電導率可達2.15×10-7 S/cm,與環氧樹脂相比提升了7個數量級,至於彈性模數及熱傳係數分別為616 MPa與0.41 W/mK,與環氧樹脂相比分別提升了54%和78%。
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 8, pp. 902-907.
Berens, A. R., Huvard, G. S., Krosmeyer, R. W., & Kuing, F. W. (1992). Application of Compressed Carbon Dioxide in the Incorporation of Additives into Polymers. J. Appl. Polym. Sci., 46, pp. 231-242.
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., . . . Stormer, H. L. (2008). Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun., 146, pp. 351-355.
Calvo, L., Holmes, J. D., Yates, M. Z., & Johnston, K. P. (2000). Steric Stabilization of Inorganic Suspensions in Carbon Dioxide. J. Supercrit. Fluids, 16, pp. 247-267.
Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nuesch, F. A., & Chu, B. T. (2012). Size and Synergy Effects of Nanofiller Hybrids including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites. Carbon, 50, pp. 5380-5386.
Chatterjee, S., Wang, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., Li, W. L., . . . Chu, B. T. (2012). Mechanical Reinforcement and Thermal Conductivity in Expanded Graphene Nanoplatelets Reinforced Epoxy Composites. Chem. Phys. Lett., 531, pp. 6-10.
Dimitrakakis, G. K., Tylianakis, E., & Froudakis, G. E. (2008). Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Lett., 8, pp. 3166-3170.
Elias, D. C., Nair, R. R., Mohiuddin, T. M., Morozor, S. V., Blake, P., Halsall, M. P., . . . Novoselov, K. S. (2009). Control of Graphene’s Properties by Reversible Hydrogenation:Evidence for Graphane. Science, 323, pp. 610-613.
Fan, Z., Zheng, C., Wei, T., Zhang, Y., & Luo, G. (2009). Effect of Carbon Black on Electrical Property of Graphite Nanoplatelets Epoxy Resin Composites. Polym. Eng. Sci., 49, pp. 2041-2045.
Geim, A. K., & Novoselov, K. S. (2007). The Rise of Graphene. Nat. Mater., 6, pp. 183-191.
Haldorai, Y., Shim, J. J., & Lim, K. T. (2012). Synthesis of Polymer–Inorganic Filler Nanocomposites in Supercritical CO2. J. Supercrit. Fluids, 71, pp. 45-63.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, pp. 385-388.
Li, J., Wong, P. S., & Kim, J. K. (2008). Hybrid Nanocomposites Containing Carbon Nanotubes and Graphite Nanoplatelets. Mater. Sci. Eng., 483-484, pp. 660-663.
Loh, K. P., Bao, Q., Ang, P. K., & Yang, J. (2010). The Chemistry of Graphene. J. Mater. Chem., 20, pp. 2277–2289.
Luan, V. H., Tien, H. N., Cuong, T. V., Kong, B. S., Chung, J. S., Kim, E. J., & Hur, S. H. (2012). Novel Conductive Epoxy Composites Composed of 2-D Chemically Reduced Graphene and 1-D Silver Nanowire Hybrid Fillers. J. Mater. Chem., 22, pp. 8649-8653.
Ma, J., Bilotti, E., Peijs, T., & Darr, J. A. (2007). Preparation of Polypropylene/Sepiolite Nanocomposites Using Supercritical CO2 Assisted Mixing. Eur. Polym. J., 43, pp. 4931-4939.
Ma, J., Deng, H., & Peijs, T. (2010). Processing of Poly(propylene)/Carbon Nanotube Composites Using scCO2-Assisted Mixing. Macromol. Mater. Eng., 295, pp. 566–574.
Montgomery, D. C. (2010). Design and analysis of experiments (7 ed.). John Wiley& Sons, Inc.
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., . . . Gim, A. K. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, p. 1308.
Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F., & Vandersypen, L. M. (2008). Gate-Induced Insulating State in Bilayer Graphene Devices. Nat. Mater., 7, pp. 151-157.
Park, S., & Ruoff, R. S. (2009). Chemical Methods for the Production of Graphenes. Nat. Nanotechnol., pp. 217-223.
Riccardi, C. C., & Williams, R. J. (1986). A Kinetic Scheme for an Amine-Epoxy Reaction with Simultaneous Etherification. J. Appl. Polym. Sci., 32, pp. 3445-3456.
Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & S., N. K. (2007). Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater., 6, pp. 652-655.
Shieh, Y. T., Su, J. H., Manivannan, G., Lee, P. H., Sawan, S. P., & Spall, W. D. (1996). Interaction of Supercritical Carbon Dioxide with Polymers. I. Crystalline Polymers. J. Appl. Polym. Sci., 59, pp. 695-705.
Socher, R., Krause, B., Hermasch, S., Wursche, R., & Potschke, P. (2011). Electrical and Thermal Properties of Polyamide 12 Composites with Hybrid Fillers Systems of Multiwalled Carbon Nanotubes and Carbon Black. Compos. Sci. Technol., 71, pp. 1053-1059.
Srivastava, S. K., Shukla, A. K., Vankar, V. D., & Kumar, V. (2005). Growth, Structure and Field Emission Characteristics of Petal Like Carbon Nano-structured Thin Films. Thin Solid Films, 492, pp. 124-130.
Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Piner, R. D., . . . Ruoff, R. S. (2006). Graphene-Based Composite Materials. Nature, 442, pp. 282-286.
Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Lett., 8, pp. 3498-3502.
Tien, D. H., Park, J., Han, S. A., Ahmad, M., & Seo, Y. (2011). Electrical and Thermal Conductivities of Stycast 1266 Epoxy/Graphite Composites. J. Korean Phys. Soc., 59, p. 2760~2764.
Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., Lee, L. J., & Koelling, K. W. (2003). A Review of CO2 Applications in the Processing of Polymers. Ind. Eng. Chem. Res., 42, pp. 6431-6456.
Wajid, A. S., Ahmed, H. S., Das, S., Irin, F., Jankowski, A. F., & Green, M. J. (2012). High-Performance Pristine Graphene/Epoxy Composites with Enhanced Mechanical and Electrical Properties. Macromol. Mater. Eng.
Wang, S., Tambraparni, M., Qiu, J., Tipton, J., & Dean, D. (2009). Thermal Expansion of Graphene Composites. Macromolecules, 42, pp. 5251–5255.
Yang, S. Y., Lin, W. N., Huang, Y. L., Tien, H. W., Wang, J. Y., Ma, C. C., . . . Wang, Y. S. (2011). Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites. Carbon, 49, pp. 793-803.
Yu, A., Ramesh, P., Itkis, M. E., Bekyarova, E., & Haddon, R. C. (2007). Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C., 111, pp. 7565-7569.
王春山. (1995). 環氧樹脂簡介與最近的發展(一)~(四). 化工技術.
王德中. (2001). 環氧樹脂生產與應用第二版.
朱宏偉、吳德海、徐才錄. (2003). 碳奈米管. 機械工業出版社.
徐國財、張立德. (2002). 奈米複合材料. 化學工業出版社.
馬振基、趙玨. (2005). 高分子複合材料下冊 製程、檢測與應用.
高濂、孫靜、劉陽橋. (2003). 奈米粉體的分散及表面改性. 化學工業出版社.
賴家聲. (1999). 環氧樹脂與硬化劑(上)(下). 高分子工業.