研究生: |
盧彥彬 Yan-Bin Lu |
---|---|
論文名稱: |
掩飾鄰苯醌之化學:由2-甲氧基酚化合物應用重排反應於高效率合成多環化合物之研究 Chemistry of Masked ο-Benzoquinones: Efficient Entry to Highly Functionalized Multicyclic Ring Systems from 2-Methoxyphenols |
指導教授: |
廖俊臣
Chun-Chen Liao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 473 |
中文關鍵詞: | MOB 、掩飾鄰苯醌 、tandem oxy-Cope / ene reaction 、重排反應 、Diels-Alder |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究掩飾鄰苯醌之合成應用,內容共分為兩部份:第一部係探討同向1,5-雙烯化合物,以化合物143、180為例,在封管加熱的反應條件下進行tandem oxy-Cope / ene reaction;第二部份則討論反向1,5-雙烯化合物,以化合物209、220為例,在封管加熱的反應條件下進行增加一個碳的[1,2]-擴環重排反應,及[1,2]-擴環重排反應機構的探討。
第一部份: 以5-溴-2-甲氧基酚(146)為起始物,經由二乙醯氧基碘(Ⅲ)苯進行氧化反應及分子內Diels-Alder反應後可得到參環羰基化合物145。化合物145進行Stille偶合反應及羰基加成反應,得到同向加成產物151,將化合物151分別與結構對稱的親雙烯劑順丁烯二酸酐,N-苯基順丁烯二醯亞胺進行Diels-Alder反應,可得到單一個Diels-Alder加成產物143,153。同向1,5-雙烯化合物143,153在封管加熱的反應條件下進行tandem oxy-Cope / ene reaction而形成多環重排產物155,156。將化合物151與結構不對稱的親雙烯劑甲基乙烯基酮進行Diels-Alder反應,可得到比例大約為1:1的兩個Diels- Alder加成產物180、181。同向1,5-雙烯化合物180在封管加熱的反應條件下進行tandem oxy-Cope / ene reaction而形成多環重排產物182,但化合物181在相同的反應條件下完全沒有進行反應僅回收起始物。化合物180在鹼性條件下進行tandem陰離子oxy-Cope重排反應 / Aldol縮合反應得到化合物184,將化合物180的羰基進行保護,所得到縮酮化合物185在鹼性條件下進行陰離子oxy-Cope重排反應可得產物186。而化合物186和天然物vinigrol (65)具有相同的骨架。利用臭氧將多環重排產物155,156進行碳碳雙鍵的斷裂而得到順,順-駢(cis,cis- fused) 5,6,5參環骨架化合物189、190。利用四醋酸鉛將多環重排產物155,156進行三級醇與縮酮間碳碳單鍵的斷裂而得到順,反-駢(cis, trans-fused) 5,6,6參環骨架化合物192、193。而化合物192、193與天然物(+)-elisabethin A (194) 具有相同的骨架且天然物(+)-elisabethin A (194)的六個立體中心有四個是和化合物192、193的立體中心一樣。
第二部份: 以反-2-乙氧基-5-(1-丙烯基)酚200為起始物,經由二乙醯氧基碘(Ⅲ)苯進行氧化反應及分子內Diels-Alder反應後可得到參環羰基化合物201。化合物201進行羰基加成反應,得到反向加成產物203,將化合物203分別與結構對稱的親雙烯劑順丁烯二酸酐,N-苯基順丁烯二醯亞胺進行Diels-Alder反應,可得到單一個Diels -Alder加成產物209、210。反向1,5-雙烯化合物210在封管加熱的反應條件下,進行重排反應得到增加一個碳的[1,2]-擴環重排產物211及重排內酯(lactone)產物212。將化合物210置入用飽和氫氧化鈉水溶液處理過的玻璃管中,在封管加熱的反應條件下幾乎只得到增加一個碳的[1,2]-擴環重排產物211。將化合物152與結構不對稱的親雙烯劑甲基乙烯基酮進行Diels-Alder反應,可得到比例大約為1:1的兩個Diels-Alder產物220、221。反向1,5-雙烯化合物220在封管加熱的反應條件下進行重排反應得到重排產物222、223、224,但化合物221在相同的反應條件下完全沒有進行反應都只是回收起始物。化合物220置入用飽和氫氧化鈉水溶液處理過的玻璃管中,在封管加熱的反應條件下只得到重排產物222、223。我們推測反向1,5-雙烯化合物置入用飽和氫氧化鈉水溶液處理過的玻璃管中,在封管加熱的條件下進行重排反應的反應機構,如下所示。而進行重排反應得到內酯化合物224的反應機構是類似pinacol-pinacolone重排反應。
This thesis, which is divided into two parts, aims on the studies of masked ortho-benzoquinones (MOBs) and their applications. In the first part the chemistry of syn-1,5-diene compounds such as 143 and 180 which underwent the tandem oxy-Cope / ene reactions in sealed tubes is discussed. In the second part the chemistry of anti-1,5-diene compounds such as 209 and 220 which, under similar reaction conditions, underwent a one-carbon expansion through [1,2]-rearrangement process is discussed.
PartⅠ: Oxidation of 5-Bromo-2-methoxyphenol (146) with (diacetoxy) iodobenzene (DAIB) followed by intramolecular Diels-Alder reaction with trans-crotyl alcohol afforded the tricyclic ketone 145 which underwent the Stille coupling and nucleophilic addition reactions to generate the syn-addition product 151. The tricyclic triene 151 was subjected to Diels-Alder reaction with symmetrical dienophiles, such as maleic anhydride and N-phenylmaleimide, to generate single DA adducts, 143 and 153, respectively. syn-1,5-Dienes 143 and 153 in sealed tubes underwent the tandem oxy-Cope/ene reaction furnishing multicyclic compounds 155 and 156. Compound 151 when subjected to Diels- Alder reaction with methyl vinyl ketone (MVK) afforded the DA adducts 180 and 181 with stereoisomeric ratio of 1:1. During the sealed tube reaction, compound 180 underwent the tandem oxy-Cope/ene reaction generating multicyclic compound 182; however, compound 181 was unreactive under similar reaction condition. Under basic reaction condition, the tricyclic diene 180 underwent the anionic oxy-Cope rearrangement / aldol condensation reactions to afford the product 184; the carbonyl-protected tricyclic diene 185 furnished compound 186 during anionic oxy-Cope rearrangement. Structure 186 is similar to the core structure of the natural product, vinigrol (65). Cleavage of the C–C double bond by ozonolysis in multicyclic compounds 155 and 156 furnished the (cis,cis-fused)-5,6,5- tricyclic systems 189 and 190, respectively, whereas their oxidative cleavage with Pb(OAc)4 afforded (cis,trans-fused)-5,6,6-tricyclic systems 192 and 193, respectively. The stereochemical centers of 192 and 193 are the same as the chiral centers found in natural product, (+)-elisabethin A (194).
Part II: trans-2-Ethoxy-5-(1-propenyl)phenol (200) was oxidized with DAIB and subjected to intramolecular Diels-Alder reaction to afford the tricyclic compound 201. Nucleophilic addition reaction of 201 with cerium reagent followed by Diels-Alder reaction with symmetrical dienophiles, such as maleic anhydride and N-phenylmaleimide, afforded the DA adducts 209 and 210, respectively. Under similar reaction conditions described in Part I, compound 210 in the sealed tube underwent the one-carbon expansion to furnish tricyclic ketone 211 and the tricyclic lactone 212. However, if the sealed tube was pre-washed with saturated NaOH, only compound 211 was observed. Diels-Alder reaction of compound 152 with MVK furnished the DA adducts 220 and 221 with stereoisomeric ratio of 1:1. The 1,5-diene 220 in sealed tube afforded the rearrangement products 222, 223 and 224. Tricyclic diene 221 was insensitive to one-carbon expansion reaction; the starting material 221 was recovered. Compound 220 in sealed tube pre-washed with saturated NaOH furnished the rearrangement products 222 and 223. Plausible mechanisms for the rearrangement of anti-1,5-dienes in a sealed tube pre-washed with saturated NaOH are described as follows. In the case of lactone 224, the mechanism for the formation of this product is similar to pinacol-pinacolone rearrangement.
1. Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev. 2004, 104,
1381.
2. Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1991, 32, 4553.
3. (a) Gammill, R. B. Tetrahedron Lett. 1985, 26, 1385. (c) Quideau, S.;
Pouységu, L.; Looney, M. A. J. Org. Chem. 1998, 63, 9597.
4. Banwell, M. G.; Collis, M. P. J. Chem. Soc., Chem. Commun. 1991,
1343.
5. Quideau, S.; Pouysegu, L. Org. Prep. Proced. Int. 1999, 31, 617.
6. Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650.
7. Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G.
Angew. Chem. Int. Ed. 2002, 41, 1668.
8. Givens, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am.
Chem. Soc. 1971, 93, 3957.
9. (a) Paquette, L. A.; Oplinger, J. A. Tetrahedron 1987, 43, 107. (b)
Devaux, J. F.; Hanna,I.; Lallemand, J. Y. J. Org. Chem. 1993, 58,
2349, and references therein.
10. (a) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y.
J. Am. Chem. Soc. 1989, 111, 7264. (b) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1989, 1841.
11. (a) Meinwald, J.; Franenglass, E. J. Am. Chem. Soc. 1958, 80, 2349.
(b) Liao, C.-C.; Hung, S.-C. J. Chem. Soc., Chem. Commun. 1993,
1457.
12. (a) Berney, D. J. F.; Deslongchamps, P. Can. J. Chem. 1969, 47, 515.
(b) Deslongchamps, P.; Belanger, A.; Berney, D. J. F.; Borschberg, H.-J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M. ; Liao, C.-C.; MacLachlan, F. N.; Maffrand, J.-P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L; Saint-Laurent, L.; Saintonge, R.; Soucy, P. Can. J. Chem. 1990, 68, 115 and 127.
13. (a) Andersson, G.; Berntsson, P. Acta Chem. Scand. B 1975, 29, 948.
(b) Andersson, G. Acta Chem. Scand. B 1976, 30, 64. (c) Andersson, G. Acta Chem. Scand. B 1976, 30, 403.
14. McKillop, A.; Perry, D. H.; Edwards, M.; Antus, S.; Farkas, L.;
Nógrádi, M.; Taylor, E. C. J. Org. Chem. 1976, 41, 282.
15. Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1989, 30, 2255.
16. (a) Tamura, Y.; Yakura, T.; Harnata, J. I.; Kita, Y. J. Org. Chem. 1987,
52, 3927. (b) Yahura, T.; Tohma, H.; Kikchi, K.; Kita, Y. Synthesis 1989, 126.
17. Kürti, L.; Herczegh, P.; Visy, J.; Simonyi, M.; Antus, S.; Pelter, A. J.
Chem. Soc., Perkin Trans. 1 1999, 379.
18. (a) Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song,
L.-D.; Hsiao, H.-C. J. Org. Chem. 1999, 64, 4102. (b) Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Song, L.-D.; Liao, C.-C. J. Org. Chem. 1999, 64, 4111.
19. Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Synlett 2000, 421.
20. Yen, C.-F.; Peddinti, R. K.; Liao, C.-C. Org. Lett. 2000, 2, 2909.
21. Hsu, D.-S.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 1795.
22. (a) Chen, C.-H.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 155.
(b) Chen, C.-H.; Rao, P. D.; Liao C.-C. J. Am. Chem. Soc. 1998, 120, 13254. (c) Chen, C.-H; Liao, C.-C. Org. Lett. 2000, 2, 2049.
23. Hsiu, P.-Y.; Liao, C.-C. Chem. Commun. 1997, 1085.
24. Hsieh, M.-F.; Peddinti, R. K.; Liao, C.-C. Tetrahedron Lett. 2001, 42,
5481.
25. Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1996, 1537.
26. Lai, C.-H.; Ko, S.; Rao, P. D.; Liao, C.-C. Tetrahedron Lett. 2001, 42,
851.
27. (a) Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856. (b)
Liao, C.-C. Pure. Appl.Chem. 2005, 77, 1221.
28. Hsu, P.-Y.; Lee, Y.-C.; Liao, C.-C. Tetrahedron Lett. 1998, 39, 659.
29. Hsu, D.-S.; Hsu, P.-Y.; Liao, C.-C. Org. Lett. 2001, 3, 263.
30. 許岱欣,博士論文,國立清華大學,2003年.
31. (a) Lee, T.-H.; Liu, W.-C.; Liao, C.-C. Tetrahedron Lett. 1996, 37,
5897. (b) 李宗和,博士論文,國立清華大學,1996年. (c) 劉文政,博士論文,國立清華大學,1998年.
32. Lee, T.-H.; Liao, C.-C. Tetrahedron Lett. 1996, 37, 6869.
33. Liu, W.-C.; Liao C.-C. Synlett 1998, 912.
34. Hsu, D.-S.; Liao, C.-C. Org. Lett. 2003, 5, 4741.
35. (a) Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.;
Tada,T.; Koda, S.; Morimoto, Y. J. Org. Chem. 1987, 52, 5292. (b) Ando, T.; Tsurumi, Y.; Ohata, N.; Uchida, I.; Yoshida, K.; Okuhara, M. J. Antibiot. 1988, 41, 25. (c) Ando, T.; Yoshida, K.; Okuhara, M. J. Antibiot. 1988, 41, 31.
36. Norris, D. B.; Depledge, P.; Jakson, A. P. PCT Int. Appl. WO
9107, 953; Chem. Abstr. 1991, 115, 64776.
37. (a) Devaux, J-F.; Hanna, I.; Lallemand, J-Y. J. Org. Chem. 1993, 58,
2349. (b) Devaux, J-F.; Hanna, I.; Lallemand, J-Y. J. Org. Chem. 1997, 62, 5062.
38. Gentric, L.; Hanna, I.; Ricard, L. Org. Lett. 2003, 5, 1139.
39. (a) Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.; Crawford,
J. J. Org. Chem. 2003, 68, 6096. (b) Paquette, L. A.; Efremov, I.;
Liu, Z. J. Org. Chem. 2005, 70, 505. (c) Paquette, L. A.; Efremov, I.
J. Org. Chem. 2005, 70, 510. (d) Paquette, L. A.; Liu, Z.; Efremov, I.
J. Org. Chem. 2005, 70, 514.
40. Barriault, L.; Morency, L. J. Org. Chem. 2005, 70, 8841.
41. 朱崇玄,博士論文,國立清華大學,1994年.
42. (a) 卓宛靖,碩士論文,國立清華大學,1999年. (b) Juo, W.-J.; Lee,
T.-H.; Liu, W.-C.; Ko, S.; Rao, C. P.; Liao, C.-C. unpublished results.
43. (a) Imamoto, T.; Takitama, N.; Nakamura, K. Tetrahedron Lett. 1985,
26, 4763. (b) Imamoto, T. Lanthanide in Organic Synthesis; Academic Press: New York, 1994, Section 5.4, pp 80-96.
44. Silverstein, R. M.; Webster, F. X. Spectrometric Identification of
Organic Compounds; Sixth. Ed.; Wiley: New York, 1998.
45. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b) Ho, T.-L. Tandem
Organic Reactions; Wiley: New York, 1992. (c) Ziegler, F. Comprehensive Organic Synthesis, Combining C-C Bonds; Paquette, L. A., Ed.; Permagon Press: Oxford, 1991; Vol. 5, Chapter 7.3. (d) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. 1993, 32, 131.
46. For reviews on microwaves in organic synthesis, see: (a) Kappe, C.
O. Angew. Chem., Int. Ed. 2004, 43, 6250. (b) Lidström, P.; Tierny, J.;Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225. (c) Loupy, A.; Perreux, L. Tetrahedron 2001, 57, 9199. (d) Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. Synthesis 1998, 1213.
47. Tsunod, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21,
1357.
48. For reviews on the synthesis of quaternary carbon centers, see: (a)
Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363. (b) Barriault, L.; Denissova, I. Tetrahedron 2003, 59, 10105. (c) Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688. (d) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591. (e) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 110, 42. (f) Fuji, K. Chem. Rev. 1993, 93, 2037. (g) Martin, S. F. Tetrahedron 1980, 36, 419.
49. (a) Grob, C. A. Angew. Chem., Int. Ed. 1967, 6, 1. (b) Grob, C. A.
Angew. Chem., Int. Ed. 1967, 6, 1. (c) Weyerstahl, P.; Marschall, H. in Comp. org. synth. (eds. Trost, B. M.; Fleming, I.), 6, pp 1041-1070 (Permagon Press: Oxford, 1991)
50. (a) Heckrodt, T. J.; Mulzer, J. J. Am. Chem. Soc. 2003, 125, 4680.
For a review of synthetic approaches toward elisabethin A:see (b) Zanoni, G.; Franzini, M. Angew. Chem., Int. Ed. 2004, 43, 4837.
51. (a) Barriault, L.; Morency, L. J. Org. Chem. 2005, 70, 8841. (b)
Barriault, L.; Sauer, E. L. Org. Lett. 2004, 6, 3329. (c) Barriault, L.;
Sauer, E. L. O. J. Am. Chem. Soc. 2004, 126, 8569. (d) Morency, L.;
Barriault, L. Tetrahedron Lett. 2004, 45, 6105.
52. (a) Martin, S. F.; White, J. B.; Wagner, R. J. Org. Chem. 1982, 47,
3190. (b) Paquette, L. A.; Wei, H.; Rogers, R. D. J. Org. Chem
1989, 54, 2291.
53. 高世育,博士論文,國立清華大學,2005年.
54. Perrin, D. D.; Perrin, D. R. Purification of Laboratory Chemical; 4th.
Ed.; Pergamon Press; New York, 1996.