簡易檢索 / 詳目顯示

研究生: 曾柏鈞
Tseng, Po-Chun
論文名稱: 核電廠除役時不銹鋼基材與異材銲件之電化學除污技術研究
Electrochemical Decontamination Techniques for Stainless Steel Substrates and Dissimilar Metal Welds Used in Nuclear Power Plant Decommissioning
指導教授: 葉宗洸
Yeh, Tsung-Kuang
王美雅
Wang, Mei-Ya
口試委員: 馮克林
Fong, Clinton
歐陽汎怡
Ouyang, Fan-Yi
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 131
中文關鍵詞: 304 不銹鋼異材銲件高溫氧化處理氧化層電鍍沉積氧化層電化學除污
外文關鍵詞: 304 stainless steel, dissimilar metal weld, high temperature treated oxide layer, electrodeposited oxide layer, electrochemical decontamination
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當核電廠達到可以除役的年限,而且不再延役時,將會進入除役階段。核電廠除役過程中,金屬組件上經由除污程序移除表面受到活化的氧化層與基材表層後達可外釋標準,金屬組件就可做為一般金屬廢棄物回收,減少金屬放射性廢棄物的量。
    本研究將針對常作為核一廠組件之304不銹鋼與銲材之82合金進行除污研究。本研究的除污方法選擇電化學除污法進行探討,原因為電化學除污對導電材料具有相當高除污因子,可有效地去除導體表面的放射性污染物直至外釋標準,且電化學除污產生的二次廢棄物少於化學除污。
    本研究共分為兩個部分,第一部分為透過高溫爐管與電鍍法分別模擬核電廠金屬組件的氧化層。為了探討除污速率與機制,針對四種類型的試片進行備製,包含基材、高溫處理氧化層、電鍍氧化層、複合氧化層,並利用掃描式電子顯微鏡、X光繞射與拉曼光譜,分析氧化層的結構與厚度。第二部分為電化學除污對於氧化層與金屬基材去除的效果,量測每次電解前後重量與厚度的變化,比較40wt%與60wt%磷酸濃度對金屬組件除污的影響,以及在40wt%磷酸濃度下,異材銲件除污效果。
    模擬氧化層的結果顯示,304不銹鋼經過高溫氧化處理,主要氧化層為FeCr2O4,再透過電鍍沉積 Fe3O4模擬crud來形成複合氧化層。在異材銲件的部份,82合金經過高溫氧化處理後,會生成Cr2O3、FeCr2O4與NiFe2O4混合氧化層,再透過電鍍沉積 Fe3O4形成複合氧化層。
    電化學除污的結果顯示,在304不銹鋼的部分,以40wt%磷酸水溶液去除FeCr2O4氧化層之蝕刻速率優於60wt%,而60wt%磷酸水溶液去除Fe4O3氧化層與304不銹鋼基材之蝕刻速率優於40wt%。在異材銲件的部份,銲材之82合金蝕刻造成的厚度變化是母材之304不銹鋼的兩倍以上,但82合金表面之複合氧化層在30 ℃的40wt%磷酸濃度下,蝕刻後局部區域出現氧化層殘留,然而溫度升高至60 ℃,氧化層殘留的問題可獲得改善。


    When a nuclear power plant has reached the end of its operational life and has not extended the service, it enters the stage of decommissioning. After the decontamination process, the surface of the metal component and its oxide layer were removed. Subsequently, the metal components can be recycled as the general metal waste. Furthermore, the decontamination process can reduce the amount of radioactive materials.
    Austenitic 304 SS and alloy 82 are extensively used in Chinshan nuclear plant. Therefore 304 SS and 304 SS-alloy 82 dissimilar metal weld were studied in this experiment. This research is focus on electrochemical decontamination. Because electrochemical decontamination has a relatively high decontamination factor for conductive materials and this method produces less secondary waste than chemical decontamination.
    This study of 304 stainless steel is divided into two parts. The first part is to simulate the oxide layer of metal components of nuclear power plants through the furnace and electrodeposition method, respectively. In order to discuss the rate of decontamination and mechanism in detail, the samples were divided into four types: base material, high temperature treated oxide layer with the base metal, electrodeposited oxide layer with the base metal, and multiple oxide layer. The morphology, thickness and structure of oxide was analysed by SEM, XRD and Raman spectroscopy. The second part is the effect of electrochemical decontamination on the removal of oxide layer and metal substrate. The effect of 40wt% and 60wt% phosphoric acid concentration on the decontamination of metal components were compared by measuring the change weight and thickness before and after each electrolysis. At 40wt% phosphoric acid concentration, the decontamination effect of dissimilar metal welds also be discussed.
    The results of the simulated oxide layer show that the main oxide layer on the 304 stainless steel is FeCr2O4 after high temperature oxidation treatment. After that, Electrodeposited Fe3O4 simulates crud to form a multiple oxide layer. In the parts of dissimilar matal welds, the oxide layer on the alloy 82 is a mixed oxide layer of Cr2O3, FeCr2O4 and NiFe2O4 after high temperature oxidation treatment. Next, electrodeposited Fe3O4 simulates crud to form a multiple oxide layer.
    The results of electrochemical decontamination show that in the part of 304 stainless steel, the etching rate of the FeCr2O4 oxide layer with a 40wt% phosphoric acid aqueous solution is better than 60wt%, and the etching rate of the 60wt% phosphoric acid aqueous solution to remove the Fe4O3 oxide layer and the 304 stainless steel substrate is better than 40wt%. In the part of 304SS-alloy 82 dissimilar metal weld component, thickness change which was caused by etching to alloy 82 (solder) is more than twice as fast as is 304 stainless steel (parent metal). The oxide layer remains on local surface after etching the multiple oxide layer on the surface of alloy 82 under the condition of 40wt% phosphate concentration at 30°C. However, the temperature rises to 60°C, the problem of remaining oxide layer was improved.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 基礎理論與文獻回顧 5 2.1 核電廠組件之材料簡介 5 2.1.2異材金屬銲接方法 7 2.2 放射性物質來源 8 2.3 金屬組件之氧化層結構 10 2.4 除污因子 12 2.5 各類除污技術 12 2.5.1化學除污[18] 15 2.5.2電化學除污[17][18][19][20] 16 2.5.3機械除污[19][21] 17 2.5.4熔融除污[19][20] 19 2.5.5泡沫除污[19] 19 2.5.6化學凝膠除污[16][21] 20 2.5.7超音波除污[16] 20 2.5.8生物除污[23] 20 2.6電化學除污 21 2.6.1電解基礎原理 21 2.6.2電解液溫度對於電解速率之影響 23 2.6.3電化學除污法與化學除污法之比較 24 2.6.4電解質 25 2.6.5以磷酸作為電解液之優點 27 2.7實際使用磷酸除污之案例 28 2.7.1德國Gundremmingen A(KRB)核電廠-磷酸再生技術[27] 28 2.7.2實際使用磷酸除污之案例-義大利Caorso核電廠[28][29] 30 2.8電化學除污相關文獻回顧 33 2.8.1電化學除污輔助物理除污之電弧放電法[30] 33 2.8.2電化學除污搭配超音波除污[31] 35 第三章 研究方法 38 3.1 實驗流程 38 3.1.1 304不銹鋼 38 3.1.2 異材銲件 40 3.2 試片準備 41 3.2.1試片規格與成分 41 3.2.2固溶處理 42 3.2.3敏化處理 42 3.2.4 異材銲件製備 43 3.3預長氧化層 44 3.3.1高溫預長氧化層 44 3.3.2 電鍍氧化層 45 3.4 電化學除污 47 3.5 氧化層性質分析與表面形貌觀察 48 3.5.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 48 3.5.2拉曼散射光譜(Laser Raman Spectroscopy,LRS) 49 3.5.3 X光繞射 (X-ray Diffraction,XRD) 50 3.6 重量變化分析 50 3.7 厚度變化分析 51 3.8 微硬度試驗 53 3.9 四點探針 53 第四章 實驗結果與討論 55 4.1表面性質 55 4.1.1 氧化層結構 55 4.1.2 氧化層厚度 61 4.2電化學特性探討 67 4.2.1電流密度與電壓之關係曲線 67 4.2.2電場分佈加速邊界反應之幾何效應 68 4.3磷酸水溶液濃度對除污效率之影響 69 4.3.1巨觀表面變化 70 4.3.2重量變化 82 4.3.3厚度變化 88 4.3.4 除污後之微觀表面形貌 93 4.3.5蝕刻機制 95 4.4異材銲件微硬度分析 96 4.5異材銲件對除污之影響 96 4.5.1巨觀表面變化 97 4.5.2厚度變化 107 4.5.3 除污後之微觀表面形貌 111 4.5.4蝕刻機制 114 4.6 化學自然浸沒 121 第五章 結論 124 第六章 未來建議工作 126

    [1]台灣電力公司, “核電廠基本資料”
    [2]MarketsandMarkets, “Nuclear Decommissioning Services Market: Nuclear Decommissioning Services Market by Reactor Type (PWR, BWR, & GCR), Strategy (Immediate Dismantling, Deferred Dismantling, and Entombment), Capacity (Up to 800 MW, 801 MW-1,000 MW, and Above 1,000 MW), and Region - Global Forecast to 2021”
    [3] Edward M. Davis, NIC Global Summit Outlook on Decommissioning Market, NIC, 2016
    [4]J. A. Roberts, Structural materials in nuclear power systems, Springer Science & Business Media, 2013
    [5]郭榮卿, 核能電廠材料劣化與對策研究:現況與規劃 ,台灣原子能論壇, 2006
    [6]R. M. Horn, G. M. Gordon, F. P. Ford and R. L. Cowan, “Experience and assessment of stress corrosion cracking in L-grade stainless steel BWR internals”, Nuclear Engineering and Design, (1997) 313-325
    [7]M. J. Cieslak, and W. F. Savage, “Weldability and Soildification on cast stainless steel”, Weld Journal, 59, (1980) 136-146
    [8]C. D. Lundin and C. P. D. Chou, “Fissuring in the Hazard HAZ Region of Austenitic Stainless Steel Welds”, Welding Journal, (1985) 113-118
    [9] S. Venugopal, S.L. Mannan and P. Rodriguez, “Optimal Design of a Hot Extrusion Process for AISI Type 304L Stainless Steel Using a Model for the Evolution of Microstructure”, Modeling and Simulation in Material Science and Engineering, 10(3), (2002) 253-265
    [10]H.U. Hong, B.S. Rho and S.W. Nam, “A Study on the Crack Initiation and Growth from δ-ferrite/γ-phase under Continuous Fatigue and Creep-Fatigue Conditions in type 304L Stainless Steels”, International Journal of Fatigue, 24(10), (2002) 1063-1070
    [11]周長彬、蘇程裕、蔡丕樁、郭央諶, 焊接學, 全華科技圖書, 2005
    [12]Reference neutron activation library, no. IAEA-TECDOC-1285, 2002
    [13] C. C. Lin, Radiochemistry in Nuclear Power Reactors, National Academy Press, Washington D. C., USA, 1996
    [14] Osterhout, Marilyn M., Decontamination and Decommissioning of Nuclear Facilities, Argonne National Laboratory Idaho Falls, Plenum Press Publishing Corporation, 1980.
    [15]Lawrence E. Boing, Decommissioning of Nuclear Facilities Decontamination Technologies, IAEA, 2006
    [16]A. Kaul, M. Lasch, Landolt-Bornstein-Group VIII Advanced Materials and Technologies Radiological Protection, 8 Decontamination, Springer Nature, 2005
    [17]NEA Co-operative Programme for Exchange of Scientific and Technical Information Concerning Nuclear Installations Decommissioning Projects, Decontamination Techniques Used in Decommissioning Activities, NEA ,1999
    [18]Kinnunen, Petri, ANTIOXI–Decontamination techniques for activity removal in nuclear environments, VTT Technical Research Centre, FP6-036367, 2008
    [19]Dan Gabriel Cacuci, Handbook of Nuclear Engineering, vol. 1, Springer ,2010.
    [20]Michele Laraia, Nuclear Decommissioning - Planning, Execution and International Experience, Woodhead Publishing Series in Energy, 2012
    [21]international atomic energy agency, State of the Art Technology for Decontamination and Dismantling of Nuclear Facilities, technical reports series no. 395, vienna, 1999
    [22] L. Chen, D. B. Chamberlain, C. Conner, and G. F. Vandegrift, A Survey of Decontamination Processes Applicable to DOE Nuclear Facilities, Argonne National Laboratory, Argonne, 1997
    [23]Steven J. Bossart, Danielle M. Blair, “Decontamination technologies for facility reuse”, WM’03 Conference, 2003
    [24]Wei Han, Fengzhou Fang, “Fundamental aspects and recent developments in electropolishing”, International Journal of Machine Tools and Manufacture, 139, (2019) 1-23
    [25]G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, G. Chen, Electropolishing of surfaces: theory and applications, Surface Engineering, 2016
    [26]L. Chen, D.B. Chamberlain, C. Conner, G.F. Vandegrift, A Survey of Decontamination Processes Applicable to DOE Nuclear Facilities, Argonne National Laboratory, 1997
    [27]Stang, W., Fischer, A., Rubischung, P., “Large-scale application of segmenting and decontamination techniques”, Decommissioning of Nuclear Installations, Bruxelles (B), 1989.
    [28]F. Pilo, E. Fontani, D. Aquaro, “Clearance of BWR steam piping by off line chemical decontamination”, Nuclear Engineering and Design, 269, (2014) 317-322
    [29]R. Lo Frano, D. Aquaro, E. Fontani, F. Pilo, “Application of PHADEC method for the decontamination of radioactive steam piping components of Caorso plant”, Nuclear Engineering and Design, 273, (2014) 595-601
    [30]K. Fujiwara, S. Furukawa, K. Adachi etc. “A new method for decontamination of radioactive waste using low-pressure arc discharge”, Corrosion Science, 48, (2006) 1544-1559
    [31] Chunhai Lu, Qingfeng Tang, Min Chen, Xuejuan Zhou, Zhaofa Zheng, “Study on ultrasonic electrochemical decontamination”, Radioanalytical and Nuclear Chemistry, 316, (2018) 1-7
    [32]H. M. Kothari et al., “Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)- triethanolamine”, Materials Research Society, 21(1), (2006) 293-301
    [33]Soon-Hyeok Jeon, Yeong-Ho Son, Won-Ik Choi, Geun Dong Song and Do Haeng Hur, “Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes”, Materials, 11, (2018) 62
    [34]Soon-Hyeok Jeon, Won-Ik Choi, Geun-Dong Song, Yeong-Ho Son and Do Haeng Hur,
    “Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates”, Coatings, 6, (2016) 62
    [35]John Kirtley, Victoria Leichner, Hergen Eilers, “Raman spectroscopy of oxygen carrier particles in harsh environments”, SPIE Proceedings, 10639, (2018)
    [36]Brian D. Hosterman, “Raman spectroscopic study of solid solution spinel oxides”, Master of Science University of Nevada, Las Vegas, 2006
    [37] Ji Hyun Kim and Il Soon Hwang, “In-situ Raman Spectroscopic Study of Oxide Films on Alloy 600 in Simulated PWR Water”, Proceedings of the Korean Nuclear Spring Meeting, Korea, 2003
    [38] Peter R. Kosting and Conrad Heins, Jr., “Corrosion of Metals by Phosphoric Acid”, industrial and engineering chemistry”, 23(2), (1931)
    [39] Carlos A. Figueroa, Elsa E. Sileo, Pedro J. Morando and Miguel A. Blesa, “Dissolution of Nickel Ferrite in Aqueous Solutions Containing Oxalic Acid and Ferrous Salts”, Colloid and Interface Science, 225, (2000) 403–410
    [40] D. D. Macdonald, L. B. Kriksunov, “Flow Rate Dependence of Localized Corrosion in Thermal Power Plant Materials”, Advances in electrochemical science and engineering, 5, (1997)
    [41] D. D. Macdonald, “The Point Defect Model for the Passive State”, J. Electrochem. Soc., 139(12), (1992)
    [42] J. J. Beltrán, F. J. Novegil, K. E. García, C. A. Barrero, “On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures”, Hyperfine Interact, 195, (2010)133–140

    QR CODE