簡易檢索 / 詳目顯示

研究生: 陳柏安
Chen, Po-An.
論文名稱: 建立TDS系統分析鋁合金表面分子結合能
Developing a TDS system and the analysis of the molecular binding energy on aluminum surface
指導教授: 陳俊榮
Chen, June-Rong
口試委員: 熊高鈺
Hsiung, Gao-Yu
薛心白
Hsueh, Hsin-Pai
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 熱脫附質譜鋁表面結合能脫附能吸附
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建造一套可在高真空環境下傳送樣品的TDS(thermal desorption spectroscopy)系統,在替換樣品的過程可使分析腔保持在真空環境,並對鋁合金樣品在升溫過程產生的脫附分子作分析研究。
    主系統不鏽鋼腔體在前置實驗中,必須經由烘烤加熱降低背景值,其中利用殘餘氣體分析儀以及游離式真空計分別量測腔體內部各分子的分壓以及總壓變化,發現在烘烤過程腔體內部有碳氫化合物的脫附分子產生,推測來源為烘烤時的局部加熱造成的內部零件熱釋氣汙染。烘烤後有效降低腔體背景值,主腔體氣壓由3.85x(10^-8) mbar降至2.2x(10^-9)mbar。在熱脫附過程控制升溫速率
    0.25℃/sec時,可於樣品120℃時得到最大脫附,定量此時水的脫附總量為
    (1.54±27%) X(10^17)個水分子,並求得脫附能為(27.08±2.5%)%kcalmol^-1。
    本論文中熱脫附過程腔體的背景影響以及升溫速率的變化皆對實驗造成誤差,若能使升溫速率固定並持續加溫超過500℃,便可進一步釐清脫附分子的結合能變化。


    In this thesis, a TDS (Thermal Desorption Spectroscopy) system was
    established at the vacuum system to measure the amount of molecular vapor desorbed on the aluminum surface during the thermal desorption process. In addition, the vacuum chamber can stay in a high vacuum sate when the sample is replaced.
    Before the TDS experiment, the main chamber needed to be baked out because the full bake out provides a better vacuum. During the baking process, hydrocarbon molecular were detected by RGA. Hydrocarbon molecular were from the components in the vacuum system because some parts of the vacuum system were overheating. After baking process, the total pressure of the system is from 3.85x(10^-8)mbar to 2.2x(10^-9) mbar. For the TDS experiment, an aluminum sample was heating up at a rate 0.25℃/sec. The desorption peak appeared at 120℃ and the corresponding desorption energy of water was (27.08±2.5%)%kcalmol^-1. The amounts of water vapor desorbed were(1.54±27%) x10^17 molecules.
    For the TDS process, if the heating temperature can reach to 550℃ that will clarify the changes of the binding energy.

    摘要i 英文摘要ii 誌謝iii 目錄iv 第一章、引言1 第二章、實驗原理5 2.1 真空中分子吸附5 2.2 熱脫附質譜分析6 2.2.1脫附分子的總量計算6 2.2.2脫附能計算7 2.2.3 脫附方程式中反應階數的影響8 2.2.3.1零階反應9 2.2.3.2一階反應9 2.2.3.3二階反應9 2.2.4 計算脫附能的其他方法10 2.2.4.1 Redhead method 10 2.2.4.2 vary heating rate 10 2.2.4.3 complete analysis method 11 2.3 吸附層數計算 12 第三章、實驗系統與實驗步驟 14 3.1 實驗系統14 3.1.1.真空系統14 3.2 實驗步驟16 3.2.1樣品製備與前置實驗16 3.2.1.1 樣品製備16 3.2.1.2 載台與傳送裝置校正16 3.2.1.3 腔體與載台除氣17 3.2.2 R-type與K-type溫度校正17 3.2.3 熱脫附圖譜實驗18 第四章、實驗結果與討論19 4.1 前置實驗19 4.1.1 載台與傳送裝置校正19 4.1.2 腔體與載台除氣19 4.2 R-type與K-type溫度校正21 4.3 熱脫附實驗21 4.4 誤差分析23 4.4.1 儀器誤差23 4.4.2 熱脫附誤差分析23 4.4.3 脫附能誤差分析24 第五章、結論26 參考文獻29 圖33

    1.國家實驗研究院,”真空技術與應用”,儀器科技研究中心,(2001).

    2.H. F. Dylla, D. M. Manos and P. M. LaMarche, “Correlation of out gassing of stainless and aluminum with various surface
    treatments”, J. Vac. Sci. Technology. A 11(1993), 2623.

    3.H. F. Dylla, “Glow discharge techniques for conditioning
    highvacuum systems”, J. Vac. Sci. Technol. A 6 (1988), 1276.

    4.K. Akaishi, K. Ezaki, Y. Kubota, O. Motojima, “Reduction of water outgassing and UHV production in an unbaked vacuum chamber by neon gas discharge”, Vacuum 53 (1999), 285.

    5.N. C. Balchin, “The friction of clean metals immerse in liquid
    sodium”, Br. J. Appl. Phys. 13 (1962), 564-569.

    6.熊高鈺、詹哲鎧、張進春、陳慶隆、陳彥斌、許憲能、薛心白、陳俊榮,
    “同步加速器台灣光子源超高真空系統設計”,真空科技 21(3-4) (2008), 12-19.

    7.M. Mohri, S. Maeda, H. Odagiri, M. Hashiba , T. Yamashina and H.
    Ishimaru, “Surface study of Type 6063 aluminum alloys for vacuum
    chamber materials”, Vacuum, V34(6) (1984), 643.

    8.H. Pölzl, F. Zinka, D. Gleispach, A. WinklerAl(111), “Adsorption
    of H2O on Al(111) and the interaction of atomic D with the ice
    layer”, Surface Science 440 (1999), 196–212.

    9.鄭宇尊,“超高真空樣品經乾燥曝氣之熱釋釋氣研究”,碩士論文,國立清
    華大學生醫工程與環境科學所,(2008).

    10.林怡君,“以極乾燥氮氣曝氣之鋁合金真空腔熱釋氣研究”,碩士論文,國
    立清華大學生醫工程與環境科學所,(2011).

    11.蕭屹崴,“利用不同氧氣含量擠型之鋁合金表面熱釋氣研究”,碩士論文,
    國立清華大學生醫工程與環境科學所,(2012).

    12.楊財烈,“鋁合金表面曝水後受光照射作用之探討”,碩士論文,國立清華
    大學原子科學系,(2003).

    13.李仁佑,“真空中絕熱膨脹水氣吸附作用之探討”,碩士論文,國立清華大
    學原子科學系,(2003).

    14.葉家瑋,“建立紅外光分析系統以探討真空中水氣的現象”,碩士論文,國
    立清華大學生醫工程與環境科學系,(2007).

    15.劉文峰,“利用紅外光光譜儀探討真空中水氣吸附現象”,碩士論文,國立
    清華大學生醫工程與環境科學系,(2008).

    16.賈立凱,“以紅外光光譜儀定量真空中鋁合金表面的水氣吸附”,碩士論
    文,國立清華大學生醫工程與環境科學系,(2009).

    17.黃晧昌,“以PMIRRAS量測鋁合金樣品表面經處理後的水分子吸附”,碩士
    論文,國立清華大學生醫工程與環境科學系,(2013).

    18.林峻模,“以TDS及FTIR方法探討鋁合金樣品之水氣吸附”,碩士論文,
    國立清華大學生醫工程與環境科學系,(2015).

    19.姚慕蠡, “以TDS及PMIRRAS方法探討鋁合金樣品表面水氣吸附機制”,
    碩士論文,國立清華大學生醫工程與環境科學系,(2015).

    20.Weissler, G. L.,“Vacuum Physics and Technology”,New
    York : Academic Press, (1979).

    21.F. von Zeppelin, M. Haluška, M. Hirscher,“Thermal desorption
    spectroscopy as a quantitative tool to determine the hydrogen
    content in solids”, Thermochimica Acta, Vol. 404 (2003) 251-258.

    22.A. M. de Jong and J. W. Niemantsverdriet,“Thermal desorption
    analysis: comparative test of ten commonly applied procedures”,
    Surface Science 233 (1990) 355-365

    23.Ranke, Wolfgang “Thermal Analysis-TDS” Lecture. Fritz- Haber
    Institut (2005)

    24.B.Shivaveni,A.Ajitha,V.Uma “Thermol desorption spectroscopy”
    review paper , world journal of pharmacy and pharmaceutical
    sciences,volume 4 ,issue 11 ,458-475

    25.D. E. Brown, S. M. George, C. Huang, E. K. L. Wong, Keith B.
    Rider, R. Scott Smith, Bruce D. Kay, “H2O condensation
    coefficient and refractive index for vapor-deposited ice from
    molecular beam and optical interference measurements”, J. Phys.
    Chem. (1996), 100, 4988-4955.

    26.R.R.Addis,L.Pensak,”Trans 7th Natl.Vacuum Symp “,(1960),p.39

    QR CODE