研究生: |
林佳漢 |
---|---|
論文名稱: |
應用錫膏回融快速填滿矽穿孔連接器技術之研究 A Study of Fast Filling Through Silicon Via Interconnects Using Solder Reflow Technology |
指導教授: | 方維倫 |
口試委員: |
鄭裕庭
林炯文 方維倫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 矽穿孔 、錫膏回融 、三維積體電路整合 |
外文關鍵詞: | TSV, Solder Reflow, 3D IC Integration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用錫膏本身的強大內聚力,搭配溝槽(Cavity)與矽穿孔(Through Silicon Via, TSV)幾何尺寸的限制,使得熔融狀態的錫膏,擁有快速填滿矽穿孔連接器之優勢。本文提出的技術可克服目前普遍使用的電鍍銅填滿矽穿孔技術問題,此技術能大幅降低填滿矽穿孔之時間,如果不考慮加熱與冷卻錫膏的時間,其成形時間只需數秒。並能大幅簡化電鍍銅填滿矽穿孔之製程步驟,使用一次性錫膏回融,即可同時形成微凸塊(Micro Pad)、微錫球(Micro Bump)與矽穿孔。可利用錫膏本身的內聚力,改善電鍍銅製程容易產生空孔之缺點。本研究除了使用數值軟體提供設計參數外,也會實際將此技術應用於中介層與微機電熱制動器中,並使用三維積體電路整合(3D IC Integration)之架構,將中介層與微機電熱制動器整合,驗證錫膏回融快速填滿矽穿孔連接器技術的可行性。
In this paper, we use large cohesion of the solder paste, combine with constrain of cavity and TSV, having the advantage of faster filling TSV. The technology can overcome the current widespread use of plating copper fill TSV issues. This technology can significantly reduce the time of filling TSV. If do not consider the time of the heating and cooling. This process time is only a few seconds. And significantly simplifies the electroplating copper to fill TSV process steps. Use once solder reflow, micro pad, micro bump and TSV can be formed at the same time. And we use cohesion of the solder paste, can improve disadvantage of copper electroplating filling via. In this study not only use of numerical software design parameters, also actual apply this technique to interposer and MEMS actuator. And we use 3D IC Integration type, integrated with interposer and MEMS actuator. To prove the practicability of faster filling TSV interconnects using solder reflow technology.
[1] http://www.itrs.net/
[2] http://www.st.com/internet/com/home/home.jsp
[3] http://www.memsindustrygroup.org
[4] http://www.soccentral.com/results.asp?EntryID=29800
[5] http://www.samsung.com/ca/#latest-home
[6] M. Motoyoshi, “Through-silicon via (TSV),” Proceedings of the IEEE, 97, pp 43-48, January, 2009.
[7] D. Henry, F. Jacquet, M. Neyret, X. Baillin, T. Enot, V. Lapras, C. Brunet-Manquat, J. Charbonnier, B. Aventurier, and N. Sillon, “Through silicon vias technology for CMOS image sensors packaging,” IEEE Electronic Components and Technology Conference, Lake Buena Vista, Florida, USA, May, 2008, pp 556-562.
[8] T. Fukushima, Y. Yamada, H. Kikuchi, and M. Koyanagi, “New three-dimensional integration technology using chip-to-wafer bonding to achieve ultimate super-chip integration,” Japanese Journal of Applied physics, 45, pp 3030-3035, 2006.
[9] V.P. Ganesh, S. Lim, D. Witarsa, H.W. Yin, M. Kumar, L.A. Lim, S.W. Yoon, and V Kripesh, “Assembly technology development for 3D silicon stacked module for handheld products,” IEEE Electronic Components and Technology Conference, San Diego, CA, USA, May, 2006, pp 1300-1306.
[10] J.H. Lau, C.K. Lee, C.S. Premachandran, and Y. Aibin, Advanced MEMS Packaging, New York, NY: McGraw-Hill, 2010.
[11] S. Burkett, D. Temple, B. Stoner, C. Craigie, X. Qiao, and G. McGuire, “Processing techniques for vertical interconnects,” International Semiconductor Device Research Symposium, Washington, DC, USA, December, 2001, pp 403-406.
[12] S. L. Burkett, X. Qiao, D. Temple, B. Stoner, and G. McGuire, “Advance processing techniques for through-wafer interconnects,” Journal of Vacuum Science Technology B, 22, pp 248-256, January, 2004.
[13] S. Spiesshoefer and L. Schaper, “IC stacking technology using fine pitch, nanoscale through silicon vias,” IEEE Electronic Components and Technology Conference, New Orleans, LA, USA, May, 2003, pp 631-633.
[14] P. Dixit, and J. Miao, “Fabrication of high aspect ratio 35 μm pitch interconnects for next generation 3-D wafer level packaging by through-wafer copper electroplating,” IEEE Electronic Components and Technology Conference, San Diego, CA, USA, May , 2006, pp 388-393.
[15] J. Jozwiak, R. G. Southwick, V. N. Johnson, W. B. Knowlton, and A. J. Moll, “Integrating through-wafer interconnects with active devices and circuits,” IEEE Transactions on Advanced Packaging, 31, pp 4-13, February, 2008.
[16] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L. Schaper, “Process integration for through-silicon vias,” Journal of vacuum science and technology, 23, pp 824-829, July, 2005.
[17] H. H. Chang, Y. C. Shih, C. K. Hsu, Z. C. Hsiao, C. W. Chiang, Y. H. Chen, and K. N. Chiang, “TSV process using bottom-up Cu electroplating and its reliability test,” Electronic System-Integration Technology Conference, Greenwich, London, UK, September, 2008, pp 645-650.
[18] H. H. Chang, Y. C. Shih, Z. C. Hsiao, C. W. Chiang, Y. H. Chen, and K. N. Chiang, “3D stacked chip technology using bottom-up electroplated TSVs,” IEEE Electronic Components and Technology Conference, San Diego, California, USA, May, 2009, pp 1177-1184.
[19] Y.K. Ko, H.T. Fujii, Y.S. Sato, C.W. Lee, and S. Yoo, “Advanced solder TSV filling technology developed with vacuum and wave soldering,” IEEE Electronic Components and Technology Conference, Lake Buena Vista, Florida, USA, June, 2011, pp2091-2095
[20] Y.K Ko, H.T. Fujii, Y. S. Sato, C.W. Lee, and S. Yoo, “High-speed TSV filling with molten solder,” Microelectronic Engineering, 89, pp 62-64, 2012
[21] J. Gu, W. T. Pike, and W. J. Karl, “A novel capillary-effect-based solder pump structure and its potential application for through-wafer interconnection,” Journal of Micromechanics and Microengineering, 19, pp 0740051-0740057, 2009.
[22] J. Gu, W. T. Pike, and W. J. Karl, “A novel vertical solder-pump structure for through-wafer interconnects,” The 23rd IEEE International Conference on Micro Electro Mechanical Systems, Hong Kong, China, January, 2010, pp. 500-503.
[23] J. Gu, W.T. Pike, and W.J. Karl, “Solder pump technology for through-silicon via fabrication.” Journal of Micromechanical Systems, 20,pp 561-563, 2011.
[24] K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tago, and M. Bonkohara, “Ultra-high-density interconnection technology of three-dimensional packaging,” Microelectronics Reliability, 43, pp 1267-1279, August, 2003.
[25] C. S. Selvanayagam, J. H. Lau, Z. Xiaowu, S. K. W. Seah, K. Vaidyanathan, and T. C. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Electronic Components and Technology Conference, Lake Buena Vista, Florida, USA, May, 2008, pp 1073-1081.
[26] N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, and K. Takahashi, “Mechanical effects of copper through-vias in a 3D die-stacked module,” IEEE Electronic Components and Technology Conference, San Diego, California, USA, May, 2002, pp 473-479.
[27] M. Umemoto, K. Tanida, Y. Neomoto, K. Hoshino, Y. Shirai, and K. Takahashi, “High-performance vertical interconnection for high-density 3D chip stacking package,” IEEE Electronic Components and Technology Conference, Las Vegas, USA, June, 2003, pp 616-623.
[28] K. Tanida, M. Umemoto, T. Morifuji, R. Kajiwara, T. Ando, Y. Tomita, N. Tanaka, and K. Takahashi, “Au bump interconnection in 20 µm pitch on 3D chip stacking technology,” Japanese Journal of Applied Physics, 42, pp 6390-6395, October, 2003.
[29] T. Y. Kuo, S. M. Chang, Y. C. Shih, C. W. Chiang, C. K. Hsu, C. K. Lee, C. T. Lin, Y. H. Chen, and W. C. Lo, “Reliability tests for a three dimensional chip stacking structure with through silicon via Connections and Low Cost,” IEEE Electronic Components and Technology Conference, Florida, USA, May, 2008, pp 853-858.
[30] M. C. Hsieh and C. K. Yu, “Thermo-mechanical simulations for 4-layer stacked IC packages,” International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, Freibug, Germany, May, 2008, pp 1-7.
[31] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang, and K. N. Chiang, “Reliability analysis of a novel fan-out type WLP,” Soldering & Surface Mount Technology, 21, pp 30-38, 2009.
[32] M. C. Yew, C. Y. Chou, and K. N. Chiang, “Reliability assessment for solders with a stress buffer layer using ball shear strength test and board-level finite element analysis,” Microelectronics Reality, 47, pp. 1658-1662, September-November, 2007.
[33] R. R. Tummala, P. Markondeya Raj, A. Aggarwal, G. Mehrotra, K. Sau Wee, S. Bansal, T. Tan Teck, C. K. Ong, J. Chew, K. Vaidyanathan, and V. Srinivasa Rao, “Copper interconnections for high performance and fine pitch flip chip digital applications and ultra-miniaturized RF module applications,” IEEE Electronic Components and Technology Conference, San Diego, CA, USA, May, 2006, pp 102-111.
[34] A. S. Prabhu, D. B. Barker, and M. G. Pecht, “Thermo-Mechanical Fatigue Analysis of High Density Interconnect Vias,” ASME Advances in Electronic Packaging, 10, pp 187-216, 1995.
[35] B. Z. Hong, “Thermal fatigue analysis of a CBGA package with lead free solder fillets,” InterSociety Conference on Thermal Phenomena, Seattle, Washington, USA, May, 1998, pp 205-211.
[36] http://en.wikipedia.org/wiki/Surface_tension
[37] http://www.susqu.edu/brakke/evolver/workshop/workshop.htm
[38] K. A. Brakke, “The surface evolver,” Experimental Mathematics, 1, pp 141-165, 1992.
[39] K. A. Brakke, “The surface evolver and the stability of liquid surface,” Philosophical Transactions: Mathematical Physical and Engineering Sciences, 354, pp. 2143-2157, 1996.
[40] L. Li and B. H. Yeung, “Wafer level and flip chip design through solder prediction models and validation,” IEEE Transactions on Components and Packaging Technologies, 24, pp 650-654, 2001.
[41] B. H. Yeung and T. Y. T. Lee, “Evaluation and optimization of package processing, design, and reliability through solder joint profile prediction,” IEEE Electronic Components and Technology Conference, Orlando, Florida, USA, May, 2001, pp 925-930.
[42] R. Darveaux, “effects of simulation methodology on solder joint crack growth correlation,” IEEE Electronic Components and Technology Conference, Los Vegas, USA, May, 2000, pp. 1048-1058.