研究生: |
徐□怡 Heng-Yi Hsu |
---|---|
論文名稱: |
化學劑量計偵測低劑量伽傌輻射及紫外光偵測之研究 Investigation of chemical dosimeters in the low dose gamma radiation and UV radiation measurements |
指導教授: |
王竹方
Chu-Fang Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 化學劑量計 、弗利克劑量計 、二氧化鈦劑量計 |
外文關鍵詞: | chemical dosimeter, Fricke dosimeter, TiO2 sol dosimeter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討化學劑量計,分別針對弗利克劑量計及二氧化鈦計量劑進行詳細的探討。有關弗利克劑量計的研究,主要針對在低劑量的部份建立一套可以校正伽瑪輻射的系統,並探討環境溫度所造成的影響。另一主要的研究則是探討以二氧化鈦溶液劑量計來建立紫外光輻射劑量的可行性。
弗利克劑量計,亦稱為硫酸亞鐵劑量計,是一種最被廣泛使用的化學劑量計。此原理為利用亞鐵離子藉由鈷六十伽瑪射線被氧化為鐵離子。被照射後的弗利克劑量計,所吸收的劑量,可以藉由鐵離子的濃度變化來偵測與觀察並加以評估。研究指出,鐵離子的吸收強度與伽瑪射線的吸收劑量成一正比關係。傳統弗利克劑量計可以使用的劑量範圍為30-400葛雷。在本實驗中,主要研究劑量範圍著重在5-30 葛雷之間,並且測試其穩定性以及探討其再現性。
此外,本研究嘗試自行合成對紫外光輻射敏感的二氧化鈦溶膠溶液,其合成方法為:將異丙基醇氧化鈦加入無水酒精(當作分散劑)及鹽酸的混合液。經過水解的過程製備完成的二氧化鈦溶膠溶液,在紫外光射源照射下,二氧化鈦溶膠溶液的顏色由無色轉變為深藍色,而在580 nm的位置產生極強的特性吸收,且與紫外光的吸收劑量呈正比關係。在本實驗中,主要探討二氧化鈦溶膠粒徑大小對濃度的影響,並找出最佳濃度之二氧化鈦溶膠劑量計。同時,找出影響二氧化鈦溶膠劑量計之參數。
關鍵字:化學劑量計; 弗利克劑量計; 二氧化鈦溶膠劑量計
Abstract
This research describes chemical dosimeter, and the aims of this study are Fricke dosimeter and TiO2 sol dosimeter individually. In Fricke dosimeter, the main work is to set up a calibration system for gamma radiation at low dose, and to confer the influence of environmental temperature. Another main work is the feasibility to establish the ultraviolet radiation measurement system with the TiO2 sol solution.
The Fricke dosimeter also called the ferrous sulfate dosimeter is the most useful chemical dosimeter. The principle is the oxidation of ferrous ions (Fe2+) to ferric ions (Fe3+) by 60Co γ-radiation. The absorbed dose of the irradiated Fricke dosimeter can be determined by measurement of the concentration change of Fe3+. It may be an application in γ-radiation dosimeter due to a linear relationship between the absorption intensity of Fe3+ and absorbed dose of γ-radiation. It is useable in the dose range of 30-400 Gy traditionally. In this study, the main dose ranged between 5-30 Gy in Fricke dosimeter is investigated and the stability and reproducibility are also tested.
In addition, a concentrated TiO2 sol dosimeter which is sensitive to UV-radiation is prepared in this study. The synthesis of TiO2 sols was performed by hydrolysis of titanium isopropoxide adding to the mixture solution of ethyl alcohol (as dispersing solvent) and hydrochloric acid. After aging, TiO2 sols were irradiated under UV radiation the color of TiO2 sols changed from colorless to deep blue with a characteristic absorption around 580 nm. There is a linear relationship between the absorption intensity and absorbed dose of UV radiation. The influence of particle size distribution in different concentrated TiO2 sol dosimeters is studied. The parameters in TiO2 sol dosimeter are conferred in order to find the optimum concentration.
Keywords: Chemical dosimeter; Fricke dosimeter; TiO2 sol dosimeter
Reference
[1] Jay A. LaVeme *; Development of radiation chemistry studies of aqueous solutions with heavy ions, Nuclear Instruments and Methods in Physics Research, 1996, pp.302-307.
[2] Sivakumar R.; S. Selvasekarapandian; N. Mugunthamanikandan; V. M. Raghunath; Indoor gamma dose measurements in Gudalore (India) using TLD, Applied Radiation and Isotopes 2002, 56, pp.883-889.
[3] Ibbott G. S.; Applications of Gel Dosimetry, Journal of Physics: Conference Series 3, Third International Conference on Radiotherapy Gel Dosimetry 2004, pp.58-77.
[4] Pearce J. A. D.; D. C. Crossley; Gel dosimetry for direct measurement of dose distributions: Progress report, Division for the Quality of Life 2007
[5] Wang WH, Matthews KL, Teague RE; Dose rates from a cobalt=60 pool irradiator measured with Fricke dosimeters, Health Physics 2008, 94, pp. S44-S50.
[6] Austerlitz C.; V. Souza; H. P. Villar; A. Cordilha; The Use of Fricke Dosimetry for Low Energy X-Rays, Brazilian Archives of Biology and Technology 2006, 49, pp.17-23.
[7] Ross C. K.; N. V. Klassen; K. R. Shortt; G. D. Smith; A direct comparison of water calorimetry and Fricke dosimetry, Physics in Medicine and Biology 1989, 34, pp.23-42.
[8] Fricke H.; S. Morse; The chemical action of Roentgen rays on dilute ferrosulphate solutions as a measure of dose, American Journal of Roentgenol Radium Therapy and Nuclear Medicine 1927, 18, pp.430-432.
[9] Fricke H.; E. Hart; Chemical Dosimetry In Radiation Dosimetry vol. 2 F.H. Attix and W.C. Roesch (ed.) (Academic Press, New York) 1955.
[10] Schreiner L. J.; Review of Fricke gel dosimeters, Journal of Physics: Conference Series 3, Third International Conference on Radiotherapy Gel Dosimetry 2004, pp.9-21.
[11] Olszanski A.; N. V. Klassen; C. K. Ross; K. R. Shortt; The IRS Fricke Dosimetry System, PIRS-0815 2002.
[12] Kalkar C. D.; S. V. Doshi; S. Teli; Oxidation of Fe2+ Ions by Transfer of Energy From γ-irradiated NaCl in Aqueous Fricke Solution, Journal of Radioanalytical and Nuclear Chemistry, Letters 1989, 136, pp.283-290.
[13] Palm Å.; O. Mattsson; Influence of sulphuric acid contaminants on Fricke dosimetry, Physics in Medicine and Biology 2000, 45, pp.N111-N114.
[14] Juárez-Calderón J. M.; A. Negrón-Mendoza; S. Ramos-Bernal; Irradiation of ferrous ammonium sulfate for its use as high absorbed dose and low-temperature dosimeter, Radiation Physics and Chemistry 2007, 76, pp.1829-1832.
[15] Martinez T.; J. Lartigue; S. Ramos-Bernal; A. Ramos; G. F. Mosqueira; A. Negrón-Mendoza; Iron salts in solid state and in frozen solutions as dosimeters for low irradiation temperatures, Applied Radiation and Isotopes 2005, 63, pp.711-714.
[16] Shortt K. R.; The temperature dependence of G(Fe3+) for the Fricke dosemeter, Physics in Medicine and Biology 1989, 34, pp.1923-1926.
[17] Mattsson L.; K. Johansson; H. Svensson; Ferrous Sulfate Dosimeter For Control of Ionization-chamber Dosimetry of Electron and Co-60 Gamma-Beams, Acta Radiologica Oncology 1982, 21, pp.139-144.
[18] Klassen N. V.; K. R. Shortt; J. Seuntjens; C. K. Ross; Fricke dosimetry: the difference between G(Fe3+) for 60Co γ-rays and high-energy x-rays, Physics in Medicine and Biology 1999, 44, pp.1609-1624.
[19] Mills A.; S. K. Lee; M. Sheridan; Development of a novel UV indicator and dosimeter film, Analyst 2005, 7, pp.1046-1051.
[20] Huang J.; H. Ding; W.S. Dodson; Y. Li; Application of TiO2 sol for UV radiation measurements, Analytica Chimica Acta 1995, 311, pp.115-122.
[21] Huang J.; M. H. Wang; J. Zhao; N. Gao; Y. Z. Li; Application of concentrated TiO2 sols for γ-ray radiation dosimetry, Applied Radiation and Isotopes 2001, 54, pp.475-481.
[22] Monticone S.; R. Tufeu; A. V. Kanaev; E. Scolan; C. Sanchez; Quantum size effect in TiO2 nanoparticles: dose it exist?, Applied Surface Science 2000, 162-163, pp.565-570.
[23] Thompson T. L.; J. T. Yates, Jr.; Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes, Chemical Review 2006, 106, pp.4428-4453.
[24] Chen X.; S. S. Mao; Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Review 2007, 107, pp.2891-2959.
[25] Larry L. H.; J. K. West; The sol-gel process, Chemical Review 1990, 90, pp.33-72.
[26] Bahnemann D.; A. Henglein; L. Spanhel; Detection of the intermediates of colloidal TiO2-catalysed photoreactions. Faraday Discussion of the Chemical Society 1984, 78, pp.151-163.
[27] Serpone N.; Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B 2006, 110, pp.24287-24293.
[28] Bansal K. M.; M. Gratzel; A. Henglein; E. Janata; Polarographic and optical absorption studies of radicals produced in the pulse radiolysis of aqueous solutions of ethylene glycol, Journal of Physical Chemistry 1973, 77, pp.16-19.