簡易檢索 / 詳目顯示

研究生: 徐柏清
Po-Ching Hsu
論文名稱: 過渡-稀土基垂直式磁性穿隧接合之製備與探討
Fabrication and Investigation of RE-TM-based Perpendicular Magnetic Tunnel Junction
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 75
中文關鍵詞: 過渡-稀土磁性穿隧元件垂直異向性氧化鋁磁性隨機記憶體熱輔助寫入垂直穿隧磁阻效應
外文關鍵詞: Rare Earth-Transition Metal, magnetic tunnel junction, perpendicular anisotropy, aluminum oxide, Magnetic Random Access Memory, thermally-assisted writing, perpendicular, Tunneling Magnetoresistance (TMR)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    此實驗中,我們使用RE-TM材料製備具有垂直磁矩的磁性穿隧元件。此RE-TM基垂直式磁性穿隧元件可以減小自由層中漩渦結構的發生。因此,此垂直穿隧元件可以進一步地縮小化以符合高密度磁性隨機存取記憶體的要求。
    實驗程序如下:首先我們建立完整的垂直式磁性穿隧元件製作程序,包括最佳化傳統水平式磁性穿隧元件AlOX穿隧絕緣層的製程參數,並且製作垂直式磁性穿隧元件完整的模層結構。接下來,我們利用樣品震盪磁測儀、磁光柯爾效應儀分析、四點探針裝置、穿透式電子顯微鏡與原理力顯微鏡分析垂直式磁性穿隧元件之各種性質。最後,我們應用熱輔助寫入技術於垂直式磁性穿隧元件並減低自由層的翻轉場。我們在論文最後討論熱輔助寫入垂直式磁性穿隧元件的應用潛力。


    Abstract

    In this experiment, we used RE-TM materials to prepare magnetic tunnel junctions (MTJ) with perpendicular anisotropy. These RE-TM based p-MTJ could suppress the generation of vortex structures at the edge of the free layers. Therefore, the p-MTJs could be further scaled down to meet the requirement of future generation of magnetic random access memory (MRAM).
    The experiment procedure was as follows: First, we presented the complete fabrication processes of p-MTJs, including optimization of AlOX tunneling barriers in conventional MTJs, composition tuning of RE-TM magnetic layers, and finally the preparation of full stacks of p-MTJs. Next, we analyzed the p-MTJ qualities by vibration sample magnetometer (VSM), magneto-optical Kerr effect (MOKE), four-point probe technique, transmission electron microscope (TEM) and atomic force microscope (AFM) etc.. Finally, we introduced the thermally assisted writing technique into p-MTJ to reduce the switching field of the free layers. We discussed the potential and the possibility of thermally-assisted writing p-MTJ in the end of this dissertation.

    Contents Chapter 1 Introduction 1 Chapter 2 Background 3 2-1 Rare-Earth-Transition-Metal (RE-TM) Alloy 3 2-1-1 Introduction of RE-TM Materials 3 2-1-2 RE-TM materials 3 2-1-3 Magnetization and Coercivity Dependency of RE-TM Materials 6 2-1-4 Thermomagnetic Properties of RE-TM Materials 8 2-1-5 Perpendicular Anisotropies of RE-TM Films 9 2-1-6 Kerr Magneto-Optical Effect of RE-TM Materials 11 2-2 Tunneling Magnetoresistance (TMR) Effect 14 2-2-1 Spin-Dependent Tunneling (SDT) 14 2-1-2 Magnetic Tunnel Junction (MTJ) and Tunneling Magnetoresistance (TMR) 14 2-3 Magnetic Random Access Memory (MRAM) 19 2-3-1 Overview of MRAM 19 2-3-2 MRAM Device Structure 20 2-3-3 MRAM Read and Write Operation 21 2-3-4 MRAM with Perpendicular Magnetization 23 2-3-5 Thermally Assisted Writing of MRAM 25 Chapter 3 Experiment Procedure 28 3-1 Experiment Flow Chart 28 3-2 Sample Preparation 29 3-2-1 Dual Ion Beam Deposition System 29 3-2-2 in-situ Shadow Mask 30 3-2-3 Plasma Oxidation Chamber 31 3-3 Analysis Techniques 32 3-3-1 Magneto-Optical Kerr Effect (MOKE) 32 3-3-2 Vibrating Sample Magnetometer (VSM) 34 3-3-3 4-Points Probe Station 36 3-3-4 Atomic Force Microscope (AFM) 37 3-3-5 Transmission Electron Microscopy (TEM) 39 Chapter 4 Results and Discussion 41 4-1 Introduction 41 4-2 Standard Longitudinal MTJ 43 4-2-1 Sample Preparation and Analysis 43 4-2-2 AlOX Thickness Dependence of Longitudinal MTJ 43 4-2-3 Other Parameters Dependence of Longitudinal MTJ 46 4-3 RE-TM Magnetic Multilayers 48 4-3-1 Sample Preparation 48 4-3-2 TM-Rich and RE-Rich Films 50 4-3-3 RE-TM/CoFe Multilayers 52 4-4 RE-TM MTJ with Perpendicular Magnetization 57 4-4-1 Half RE-TM p-MTJ 57 4-4-2 Magnetic Property of a RE-TM p-MTJ 61 4-4-3 Transport Property of a RE-TM p-MTJ 64 4-4-4 TEM Analysis of a RE-TM p-MTJ 67 Chapter 5 Conclusion 71 References 73

    References

    [1] E. P. Wohlfarth, J. Phys. F, vol. 9, pp.L123 (1979)
    [2] M. Mansuripur, “Magneto-optical Disk Data Storage,” R.C. Dorf (ed.), Boca Raton, FL: CRC Press, Sec. VⅢ, pp. 1675-1694. (1993)
    [3] R. L. Comstock, “Introduction to magnetism and magnetic recording,” Wiley-Interscience, John Wiley & Sons Inc., pp. 75-76 (1999)
    [4] M. S. S. Brooks et al., Physica B: Condensed Matter., vol.172, pp. 95 (1991)
    [5] R. J. Gambino, and T. Suzuki, “Magneto-optical recording materials,” IEEE press, New York. (2000)
    [6] G. S. Cargill, and T. Mizogouchi, J. Appl. Phys., vol. 49, pp. 1753 (1978)
    [7] T. Egami et al., IEEE trans. Magn., MAG-23, 2269 (1987)
    [8] Hong Fu, Masud Mansuripur, and Pierre Meystre, Phys. Rev. Lett., vol. 66, pp. 1086 (1991)
    [9] M. Chikazumi, “Physics of magnetism,” New York: John Wiley (1964)
    [10] W. H. Meiklejohn, Proc. of IEEE, vol. 74, pp. 1570 (1997)
    [11] S. Tsunashima et al., IEEE Trans. Magn., MAG-14, 844 (1987)
    [12] L. N□el, J. Phys. Radium, vol. 15, pp. 225 (1954)
    [13] Y. Suzuki, J. Haimovich, and T. Egami, Phys. Rev. B, vol. 35, pp.2162 (1987)
    [14] Y. Suzuki et al., IEEE Trans. Magn., MAG-23, 2275 (1987)
    [15] Hong Fu, Masued Mansuripur, and Pierre Meystre, Phys. Rev. Lett., vol. 66, pp. 25 (1991)
    [16] P. M. Tedrow, R. Meservey, and P. Fulde, Phys. Rev. Lett., vol.25, pp.1270 (1970)
    [17] P. M. Tedrow, and R. Meservey, Phys. Rev. Lett., vol.26, pp.192 (1971)
    [18] P. M. Tedrow, and R. Meservey, Phys. Rev. B, vol.7, pp.318 (1973)
    [19] R. Meservey, and P. M. Tedrow, Phy. Rep., vol.238, pp.173 (1994)
    [20] M. Julliere, Phys. Lett., vol.54, pp.225 (1975)
    [21] J. S. Moodera et al., Phys. Rev. Lett., vol.74, pp.3273 (1995)
    [22] D. Wang et al., IEEE Trans. Magn., vol.40, 2269 (2004)
    [23] W. H. Butler et al., Phys. Rev. B, vol.63, 054416 (2001)
    [24] J. Mathon et al., Phys. Rev. B, vol.63, 220403R (2001)
    [25] Stuart S. P. Parkin et al., Nature Materials, vol.3, pp.862 (2004)
    [26] Shinji Yuasa et al., Nature Materials, vol.3, pp.868 (2004)
    [27] David D. Djayaprawira et al., Appl. Phys. Lett., vol.86, pp.092502 (2005)
    [28] W. J. Gallagher, and S. S. P. Parkin, IBM J. Res.& Dev., vol. 50, No. 1 (2006)
    [29] M. N. Baibich et al., Phys. Rev. Lett., vol. 61, pp. 2472 (1988)
    [30] B. Dieny et al., J. Appl. Phys., vol. 69, No. 8, pp. 4774 (1991)
    [31] D. D. Tang et al., IEEE Trans. Magn., vol. 31, pp. 3206 (1995)
    [32] T. M. Maffitt et al., IBM J. Res. & Dev., vol. 50, No. 1, pp. 50 (2006)
    [33] J. Shi, S. Tehrani, and M. R. Scheinfein, Appl. Phys. Lett., vol. 76, pp. 2588 (2000)
    [34] E. Girgis et al., Appl. Phys. Lett., vol. 76, pp. 3780 (2000)
    [35] K. Inomata, T. Nozaki, N. Tezuka, and S. Sugioto, Appl. Phys. Lett., vol. 81, pp. 310 (2002)
    [36] Leonid Savtchenko et al., United States Patent, No. 6545906 (2003)
    [37] Naoki Nishimura et al., J. Appl. Phys., vol. 91, pp. 5246 (2002)
    [38] I. Ikeda and S. Tsunashima, J. Magn. Soc. Jpn., vol. 24, 563 (2000)
    [39] F. Garcia, F. Fettar, S. Auffret, B. Rodmacq, and B. Dieny, J. Appl. Phys., vol. 93, pp. 8397 (2003)
    [40] J. M. Daughton, and A. V. Pohm, J. Appl. Phys., vol. 93, pp. 7304 (2003)
    [41] Jianguo Wang, and P. P. Freitas, Appl. Phys. Lett., vol. 84, pp. 945 (2004)
    [42] R. S. Beech, J. A. Anderson, A.V. Pohm, and J.M. Daughton, J. Appl. Phys., vol. 87, pp. 6403 (2000)
    [43] Jianguo Wang, and P. P. Freitas, Appl. Phys. Lett., vol. 84, pp. 945 (2004)
    [44] S. Y. Bae et al., Appl. Phys. Lett., vol. 79, pp. 4130 (2001)
    [45] A. E. T. Kuiper et al, J. Appl. Phys., vol. 89, pp. 1965 (2001)
    [46] Chih-Huang Lai et al., J. Appl. Phys., vol. 97, pp. 97 (2005)
    [47] J.G. Simmons, J. Appl. Phys., vol. 34, pp. 1793 (1963)
    [48] J. S. Moodera, and G.. Mathon, J. Magn. Magn. Mater., vol. 200, pp. 248 (1999)
    [49] C. A. M. Knechten, “Plasma Oxidation for Magnetic Tunnel Junctions” (2004)
    [50] Takashi Ikeda, United State Patent, No. 6898115 (2005)
    [51] J. J. Sun et al., Appl. Phys. Lett., vol. 76 pp. 2424 (2000)
    [52] S. Tegen et al., J. Appl. Phys., vol. 89, pp. 8169 (2001)
    [53] D. Lim, S. Kim, and S.R. Lee, J. Appl. Phys., vol. 97, pp.10C902 (2005)
    [54] Y. Ding, J. H. Judy, and J. P. Wang, IEEE Trans. Magn., vol. 41, pp. 707 (2005)
    [55] R. C. Sousa et al., Appl. Phys. Lett., vol. 73, pp. 3288 (1998)
    [56] S. Cardoso et al., Appl. Phys. Lett., vol. 76, pp. 610 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE