研究生: |
劉亘浩 Liu, Hsuan-Hao |
---|---|
論文名稱: |
以CuTiNb2O8為燒結助劑之高熱導率及低溫燒結氧化鋁研究 Low-fire, high-thermal-conductivity of Al2O3 with CuTiNb2O8 |
指導教授: |
簡朝和
Jean, Jau-Ho |
口試委員: |
林樹均
Lin, Su-Jien 葉均蔚 Yeh, Jein-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | CuTiNb2O8 、氧化鋁 、低溫共燒陶瓷 、熱導率 、微波性質 |
外文關鍵詞: | CuTiNb2O8, Al2O3, LTCC, Thermal conductivity, Microwave properties |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討 CuTiNb2O8(CTN-112)-doped Al2O3的燒結機制。透過 摻 雜 10 vol%的 CTN-112,可以將 Al2O3的自由燒結溫度從 1600 °C降至 1025 °C。
CTN-112與 Al2O3的介面會發生反應,在 CTN-112比例較少的時候形成
CuNb2O6(CN-12)而在比例較多時生成 Cu4TiNb4Ox(CTN-414),並在 1006-1010 °C反應產生液相加速晶界間的物質傳遞速率,提升 Al2O3的緻密行為。 而 在液
相生成 前的緻密行為來自於 在 Al2O3晶粒 間 富含 Cu、 Ti和 Nb的晶界玻璃膜
(Intergranular glassy film, IGF)結構,晶界膜的出現降低了晶界能,提高了燒結
驅動力,動力學上晶界膜能夠降低晶界移動的活化能,提高晶界的遷移能力。
性質的部分以 10 vol% CTN-112添 加的 Al2O3為最佳 ,介電常數 為 11 而
Q∙fr (Q為品質因子, fr為共振頻率 )為 7577 GHz共振 頻率 為 11 GHz,此系統可
以達到極高的熱導率 17 W/m·K,遠高於目前市面上常見的 低溫共燒陶瓷基板 材
料 (約 2.5 W/ 90 vol% Al2O3+10 vol% CTN-112的 熱膨脹係數 為 5.79 ppm/°C
Effects of crystalline CuTiNb2O8 (CTN-112) addition on densification, and physical properties of Al2O3 have been investigated. With 10 vol% CTN-112 present, the densification temperature of Al2O3 is greatly reduced from >1600oC to 1025oC. This is attributed to an interfacial reaction taking place between CTN-112 and Al2O3, which yields an Cu-Ti-Nb-rich intergranular glassy film (IGF) before the liquid phase of Cu4TiNb4Ox (CTN-414) is formed at 1006-1010oC. The Cu-Ti-Nb-rich IGF provides a faster kinetic route for ions to diffuse, promoting the densification kinetics of Al2O3+CTN-112 composite. A higher densification with increasing CTN-112 content at a given sintering temperature is observed; however, the thermal conductivity, dielectric and mechanical properties of the resulting Al2O3+CTN-112 composites become deteriorated. The binary Al2O3+10 vol% CTN-112 composite densified at 1025oC has a thermal conductivity of 17 Wm-1K-1, dielectric constant of 11 and product (Q·fr) of quality factor (Q) and resonant frequency (fr) of 7,000-8,000 GHz at 11-12 GHz.
1. Flaitz PL, Pask JA. Penetration of polycrystalline alumina by glass at high temperatures. J Am Ceram Soc. 1987;70:449-55.
2. Singh VK. Densification of alumina and silica in the presence of a liquid phase. J Am Ceram Soc. 1981;64:133-36.
3. Jean JH, Gupta TK. Liquid-phase sintering in the glass-cordierite system: particle size effect. J Mater Sci. 1992;27:4967-73.
4. Kingery WD. Densification during sintering in the presence of a liquid phase. I. theory. J Appl Phys. 1959;30:301-06.
5. Kingery WD, Narasimhan MD. Densification during sintering in the presence of a liquid phase. II. experimental. J Appl Phys. 1959;30:307-10.
6. Gupta VK, Yoon DH, Meyer HM, Luo J. Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 2007;55:3131-42.
7. Hayden HW, Brophy JH. The activated sintering of tungsten with group VIII elements. J Electrochem Soc. 1963;110:805-10.
8. Hwang KS, Huang HS. Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum. Acta Mater. 2003;51:3915-26.
9. Luo J, Wang H, Chiang YM. Origin of solid‐state activated sintering in Bi2O3‐doped ZnO. J Am Ceram Soc. 1999;82:916-20.
10. Wang H, Chiang YM. Thermodynamic stability of intergranular amorphous films in bismuth‐doped zinc oxide. J Am Ceram Soc. 1998;81:89-96.
11. Jud E, Zhang Z, Sigle W, Gauckler LJ. Microstructure of cobalt oxide doped sintered ceria solid solutions. J Electroceram. 2006;16:191-97.
12. Zhang T, Hing P, Huang H, Kilner J. Sintering and grain growth of CoO-doped CeO2 ceramics. J Eur Ceram Soc. 2002;22:27-34.
13. Gibbs JW. The scientific papers of J. Willard Gibbs: longmans. Green and Company. 1906.
14. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2014;62:1-48.
15. Dillon SJ, Tang M, Carter WC, Harmer MP. Complexion: a new concept for kinetic engineering in materials science. Acta Mater. 2007;55:6208-18.
16. Luo J. Liquid-like interface complexion: from activated sintering to grain boundary diagrams. Curr Opin Solid State Mater Sci. 2008;12:81-88.
17. Luo J. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J Am Ceram Soc.
22
2012;95:2358-71.
18. Choi SY, Yoon DY, Kang SJL. Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 2004;52:3721-26.
19. Chung SY, Kang SJL. Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3. Acta Mater. 2003;51:2345-54.
20. Zhang TS, Kong LB, Song XC, Du ZH, Xu WQ, Li S. Densification behaviour and sintering mechanisms of Cu-or Co-doped SnO2: a comparative study. Acta Mater. 2014;62:81-88.
21. Park M, Schuh CA. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun. 2015;6:6858.
22. Shigeno K, Kaneko S, Yamane T, Shimokawa J, Fujimori H. Improvement in dielectric properties of low temperature sintered alumina containing a small quantity of a CuO–Nb2O5 additive by substitution of titanium dioxide. J Jpn Soc Powder Powder Metallurgy. 2018;65:347-53.
23. Shigeno K, Katsumura H, Kagata H, Asano H, Inoue O. Low temperature sintering of alumina by CuO-TiO2-Nb2O5 additives. Key Eng Mater. 2006;320:181-84.
24. Tseng CF. Microwave dielectric properties of a new Cu0.5Ti0.5NbO4 ceramics. J Eur Ceram Soc. 2015;35:383-87.
25. Reeves-McLaren N, Ferrarelli MC, Tung YW, Sinclair DC, West AR. Synthesis, structure and electrical properties of Cu3.21Ti1.16Nb2.63O12 and the CuOx–TiO2–Nb2O5 pseudoternary phase diagram. J Solid State Chem. 2011;184:1813-19.
26. Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Tech. 1960;8:402-10.
27. Kobayashi Y, Katoh M. Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans Microw Theory Tech. 1985;33:586-92.
28. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679-84.
29. Hansen JD, Rusin RP, Teng MH, Johnson DL. Combined‐stage sintering model. J Am Ceram Soc. 1992;75:1129-35.
30. Ye H, Pujar VV, Padture NP. Coarsening in liquid-phase-sintered α-SiC. Acta Mater. 1999;47:481-87.
31. Lee DD, Kang SJL, Yoon DN. Mechanism of grain growth and α‐β
23
transformation during liquid‐phase sintering of β‐sialon. J Am Ceram Soc. 1988;71:803-06.
32. Akiva R, Katsman A, Kaplan WD. Anisotropic grain boundary mobility in undoped and doped alumina. J Am Ceram Soc. 2014;97:1610-18.
33. Powers J, Glaeser A. Grain boundary migration in ceramics. Interface Sci. 1998;6:23-39.
34. Afshar A, Simchi A. Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process. Scr Mater. 2008;58:966-69.
35. Li FM, Waddingham R, Milne WI, Flewitt AJ, Speakman S, Dutson J, Wakeham S, Thwaites M. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: importance of controlled oxygen and deposition energy. Thin Solid Films. 2011;520:1278-84.
36. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics, 2nd edn. New York, Wiley; 1976.
37. Yang G, Migone AD, Johnson KW. Relationship between thermal diffusivity and mean free path. Am J Phy. 1994;62:370-72.
38. Schubert WD, Neumeister H, Kinger G, Lux B. Hardness to toughness relationship of fine-grained WC-Co hardmetals. Int J Refract Metal Hard Mater. 1998;16:133-42.