簡易檢索 / 詳目顯示

研究生: 林佳暐
Lin, Chia-Wei
論文名稱: CMOS MEMS z軸微加速度計與電容感測電路之整合及實現
Integration and Implementation of CMOS-MEMS z-axis Microaccelerometer and Capacitive Sensing Circuits
指導教授: 陳榮順
Chen, Rougshun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 電容式微加速度計電容感測電路CMOS MEMS
外文關鍵詞: Accelerometer, Capacitive sensing circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為設計一出平面的加速度計外,同時也完成了一差動式電容感測電路設計,並整合於單晶片上。整體架構包含兩大部分,分別為微機械結構體以及差動式的感測電路。首先,在微元件上使用長短電極的配置方式組成感測電極,並利用ANSYS軟體進行機械結構上之應力模擬分析,以確定元件的可行性;在感測電路上,利用上下兩組的電容電壓轉換器與後端的減法器所構成,藉由HSPICE軟體的分析,模擬所設計之電容感測電路之性能,模擬結果顯示電容感測電路具備高線性度與高靈敏度的特性。整個元件透過國家晶片系統設計中心(CIC),利用TSMC 0.35 μm Mixed-Signal 2P4M Polycide 3.3/5 V製程進行製作,其後再透過兩道的後製程將微元件懸浮。實際量測上,在電路部份,差動式電容感測電路之量測結果與模擬值相當接近,代表此電路能成功地運作,其靈敏度約為21.32 mV/fF/V,解析度約為0.28 aF/√Hz;而整體元件的量測上,也證明了本元件能正常的作動,其共振頻為4.39 kHz,靈敏度為9.8 mV/g/V,非線性度則為4.7 %,雜訊位準為0.61 mg/√Hz,而且與其他軸向的耦合不大,如同理論分析所示,本元件架構具有良好的解析度與線性度。


    This study presents a capacitance sensing circuit with high sensitivity and linearity, by integrating a vertical microaccelerometer. The proposed capacitive sensing circuit is composed of a capacitance-voltage converter to amplify the readout signals, and a differential circuit, which is capable of reducing common-mode noise and offering high resolution. The microstructure and the capacitive sensing circuit were fabricated through TSMC 0.35 μm mixed-signal 2P4M polycide 3.3/5 V process. Experimental results demonstrated that the sensing circuit exhibited a linear capacitance-to-voltage relation. The sensitivity and resolution of differential sensing circuit are 21.32 mV/fF/V and 0.28 aF/√Hz, respectively. Moreover, the microstructure is successfully integrating with capacitive sensing circuit, in which with high resolution and linearity. The sensitivity and nonlinearity of the accelerometer are 9.8 mV/g/V and 4.7 %, respectively.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 本文大綱 9 第二章 系統架構與分析 10 2.1 元件系統架構 10 2.2 微加速度計結構分析 10 2.2.1 感測電極架構 15 2.2.2 微加速度計規格 17 2.3 電容感測電路設計 17 2.3.1 二級運算放大器 18 2.3.2 電容電壓轉換器 21 2.3.3 差動式電容感測電路 22 2.4 結果與討論 24 第三章 模擬結果與討論 26 3.1 微加速度計應力分析 26 3.1.1 殘餘應力分析 26 3.1.2 彈簧常數模擬 28 3.1.3 感測電極之電容模擬 29 3.1.4 加速度模擬 31 3.1.5 共振頻模擬 31 3.2 電容感測電路 35 3.2.1 運算放大器模擬結果 35 3.2.2 差動式電容感測電路模擬結果 39 3.3 光罩佈局 42 3.4 結果與討論 46 第四章 後製程與實驗結果 47 4.1 元件後製程流程 47 4.2 元件後製程結果 48 4.3 元件測試結果 50 4.3.1 電容感測電路之量測架設 51 4.3.2 電容電壓轉換器電路之量測結果 51 4.3.3 差動式電容感測電路之量測結果 54 4.3.4 整個元件之量測結果 57 4.4 結果與討論 61 第五章 結論與未來工作 63 5.1 本論文目前之貢獻 63 5.2 未來工作 64 參考文獻 65

    [1] B. Puers and W. Sansen, “ A New Uniaxial Accelerometer in Silicon Based on the Piezojunction Effect,” IEEE Transactions on Electronic Devices, ED-35, pp. 764 - 770, 1988.
    [2] P. Scheeper, J. O. Gullov, and M. Kofoed, “ A Piezoelectric Triaxial Accelerometer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 131 - 133, 1996.
    [3] L. M. Roylance and J. B. Angell, “ A Batch-fabricated Silicon Accelerometer,” IEEE Transactions on Electronic Device, ED-26, pp. 1911 - 1917, 1979.
    [4] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, “ A High-performance Planar Piezoresistance Accelerometer,” Journal of Microelectromechanical Systems, Vol. 9, pp. 58 - 66, 2000.
    [5] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “ Three-axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 431 - 435, 1996.
    [6] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “ An Integrated Force-balanced Capacitive Accelerometer for Low g Application,” Sensor and Actuator : A, Vol. 54, pp. 472 - 476, 1966.
    [7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “ Three-axis SOI Capacitive Accelerometer with PLL C-V Converter,” Sensors and Actuators A, Vol. 75, pp. 77 - 85, 1999.
    [8] P. M. Zavaracky, B. McClelland, K. Warner, J. Wang, F. Hartley, and B. Dolgin, “ Design and Process Considerations for a Tunneling Tip Accelerometer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 352 - 358, 1996.
    [9] C.-H. Liu and T. W. Kenny, “ A High-precision, Wide-bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical Systems, Vol. 10, pp. 425 - 433, 2001.
    [10] CICeNEWS,國家晶片系統設計中心電子報,Vol. 75,2007.
    [11] W. Yun, R. T. Howe, and P. R. Gray, “Surface Micromachined, Digitally Force-Balanced Accelerometer with Integrated CMOS Detection Circuitry,” Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE, pp. 126 - 131, 1992.
    [12] H. Xie and G. K. Fedder, “ A CMOS Z-axis Capacitive Accelerometer with Comb-Finger Sensing,” IEEE International Conference Micro ElectroMechanical Systems, pp. 496 - 501, 2000.
    [13] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “ A Lateral Capacitive CMOS Accelerometer with Structural Curl Compensation,” the 12th IEEE International Conference Micro ElectroMechanical Systems (MEMS’ 99), pp. 606 - 611, 1999.
    [14] T. Tsuchiya and H. Funabashi, “ A z-axis Differential Capacitive SOI Accelerometer with Vertical Comb Electrodes, ” Sensors and Actuators A, Vol. 116, pp. 378 - 383, 2004.
    [15] C. M. Sun, C. W. Wang, and W. Fang, “On the Sensitivity Improvement of CMOS Capacitive Accelerometer, ” Sensors and Actuators A, Vol. 141, pp. 347 - 352, 2007.
    [16] 李明儒,“ 靜電式微機電元件電容感測電路之設計、模擬與實現 ”,國立清華大學奈米工程與微系統研究所碩士論文,2008。
    [17] R. R. Harrison and C. Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE Journal of Solid-State Circuits, Vol. 38, no. 6, 2003
    [18] Hastings Alan, “The art of analog layout,” Upper Saddle River, NJ : Pearson/Prentice Hall, 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE