簡易檢索 / 詳目顯示

研究生: 彭顯智
Peng, Hsien-Chih
論文名稱: 陰極效能最佳化之微型氫氧燃料電池
Cathodic efficiency optimized hydrogen-oxygen micro-fuel cells
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員: 葉宗洸
Yeh, Tsung-Kuang
蘇育全
Su, Yu-Chuan
黃炳照
Hwang, Bing-Joe
薛康琳
Hsueh, Kan-Lin
黃鎮江
Huang, Jen-Jiang
顏維謀
Yan, Wei-Mon
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 186
中文關鍵詞: 微機電微系統微型燃料電池循環伏安法電化學组抗圖譜極化曲線
外文關鍵詞: MEMS, Micro-System, Micro-Fuel Cells, Cyclic Voltammetery (CV), Electrochemical Impedance Spectrum (EIS), Polarization Curves
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合了三種有利於氫氧燃料電池陰極反應之關鍵要素,製作一具備良好陰極反應效能之微型氫氧燃料電池系統,其體積與市面AA電池(三號電池)相當,僅需使用到少量燃料(陽極氫氣(20 ml/min)與陰極氧氣(40 ml/min))即可在觸媒承載量僅為0.69 mg/cm2之條件下測試獲得最佳功率密度高達26 mW/cm2;換算成Pt觸媒利用率相當於38 W/g之高效能微型氫氧燃料電池,此成果已經超越目前所有與微型燃料電池相關文獻所發表之觸媒利用率。本研究所整合之關鍵要素分別為1.奈/微米結構,可提供4個數量級以上的反應比表面積,有效提升單位面積反應效能、2.微交錯結構,提供3個Mpa以上的介面強度,可有效降低介面阻抗、3.微放射狀反應區設計,結合液態質子交換膜填入時的自旋製程,可大幅提升陰極端氧氣擴散至反應三相區的能力,並促進Pt觸媒於陰極端之有效利用率。
    本研究之研發過程所開發的新技術包含了微電極結構之設計與製作、微系統封裝技術之開發與應用、微電極結構之測試與驗證以及全電池系統之整合與測試等技術。在製程上應用了微系統製程中善用的黃光微影技術、深蝕刻技術、鍍膜技術、奈米碳管製造技術、無電鍍白金還原沉積技術以及奈微尺度流體理論針對微型燃料電池結構之製作與組裝。
    在陰極半電池效能的驗證上,利用了電化學檢測技術中的電化學循環伏安法、交流阻抗分析技術進行檢測,測試結果指出陰極反應在以3000 rpm條件下填入液態質子交換膜時的自旋速度呈現了最佳化之條件;此條件於陰極半電池測試中獲得42.5 mA/cm2之陰極效能以及分別為2.32 Ω-cm2與4.49 Ω-cm2的氧氣擴散阻抗以及電荷轉移阻抗。而全電池測試結果與陰極半電池測試趨勢相符,於相同條件下(3000 rpm)可獲得最佳功率26 mW/cm2。此結果證實了藉由本研究整合技術所製作出來的陰極反應區結構不但具有極佳的效能,並且可以被推廣應用於微型質子交換膜燃料電池、微型直接甲醇燃料電池或是微型甲醇重組式燃料電池。而本技術在未來實現可攜式微型能量源商品化之目標上具備相當龐大的潛力。


    A silicon-based and fully integrated micro proton exchange membrane fuel cell (μ-PEMFC) system is introduced in this paper, which carry out high efficient catalyst utilization and outstanding cell performance. The system size is comparable to an AA battery and consumes a very low fuel requirement (20 ml/min of hydrogen at the anode, and 40 ml/min of oxygen at the cathode). The novel design integrates micro- and nano-structures that leads to higher reaction rate due to larger surface areas, reduced impedance of fuel diffusion due to micro-patterned radial type reaction chamber incorporating a spinning-in proces that creates extra three-phase zones, and improved interfacial strength and reduced ohmic impedance due to micro-interlocks of a single cell. The best performance in the current study is 26 mW/cm2 with only 0.69 mg/cm2 of Pt catalyst; namely, a catalyst utilization ratio of 38 W/g, and is superior to the present micro-fuel cells.
    New technologies being developed in this study include the design and fabrication of micro-electrodes, micro-system package, micro-electrodes testing and the integration of a micro-fuel cell system. The processes being employed in this study include micro-lithography, silicon wet and dry etching, thin metal film deposition, chemical vapor deposition, electro-less Pt deposition and micro-fluidic manipulation. Electrochemical cyclic voltammetery (CV) and electrochemical impedance spectrum (EIS) were employed to verify the cathodic efficiency. Half cell testing results indicate the best cathodic performance corresponds to the 3000 rpm liquid NafionR spinning-in condition, which shows a 42.5 mA/cm2 cathodic efficiency and an oxygen diffusion impedance and charge transfer impedance of 2.32 Ω-cm2 and 4.49 Ω-cm2 , respectively. Polarization curves also perform a best power density of 26 mW/cm2, which also corresponds to the 3000 rpm liquid NafionR spinning-in condition. As a result, the integrative micro-silicon base cathoidc electrode could be adopted by whether the direct methanol fuel cells, proton exchange membrane fuel cells or reforming type direct methanol fuel cells. Finally, the study possesses a high potential for the realizing of the commercial mobile micro-power generators in the future.

    摘要 i Abstract iii 致謝 v 圖目錄 ix 表目錄 xv 一、緒論 1 1.1 前言 1 1.1.1 太陽能發電 2 1.1.2 風力發電 3 1.1.3 潮汐發電 4 1.1.4 地熱能發電 4 1.1.5 燃料電池 5 1.1.6 結論 5 1.2 燃料電池簡介 6 1.2.1 鹼性燃料電池 6 1.2.2 磷酸燃料電池 7 1.2.3 融熔碳酸鹽燃料電池 8 1.2.4 固態氧化物燃料電池 9 1.2.5 質子交換膜燃料電池 9 1.2.6 直接甲醇燃料電池 10 1.2.7 甲醇重組式燃料電池 11 1.3 研究動機 14 1.3.1 直接甲醇燃料電池詳述 15 1.3.2 甲醇重組式燃料電池詳述 17 1.3.3 奈微米製程技術簡介 19 1.3.4 針對微型燃料電池研發方向擬定 22 二、文獻回顧 23 2.1 微/奈米化反應區電極 23 2.2 陰極反應效能提昇方法 28 2.2.1. 反應三相區提昇技術 28 2.2.2. 陰極水管理技術 35 2.2.3. 擴散區整合技術 38 2.3 電池組裝技術 40 2.3.1. 電池封裝與介面技術 40 2.4 各類微型燃料電池技術 46 三、實驗方法 81 3.1 整體系統架構概念 81 3.2 陰極反應區設計概念 85 3.3 微電極製作 86 3.3.1 介面強度提昇微交錯結構 87 3.3.2 反應區主結構加工 90 3.3.3 奈米碳管備製 92 3.3.4 反應催化觸媒沉積 95 3.3.5 全電池與半電池組裝 98 3.4 各部件單元測試 99 3.4.1 介面強度測試 100 3.4.2 半電池測試 102 3.4.3 全電池測試 110 四、結果與討論 117 4.1 奈米碳管觀測與分析 117 4.2 陰極結構與效能驗證 120 4.2.1 微交錯結構應用與分析 120 4.2.2 電極結構觀測與分析 139 4.2.3 半電池循環伏安法與交流阻抗分析 147 4.3 全電池分析 152 4.3.1 第一代電池組 153 4.3.2 第二代電池組 155 4.3.3 第三代電池組 162 4.3.4 陰極排水進氣元件系統化測試 165 五、結論與未來工作 169 六、U附錄U 170 6.1使用碳布膜電極組之微型燃料電池相關參考文獻 170 6.2 成長高準直度奈米碳管之相關研究 171 七、參考文獻 181

    1.N. Ferrer-Anglada, V. Gomisa, Z. El-Hachemib, U. Dettlaff-Weglikovskac, M. Kaempgenc and S. Rothc “Carbon nanotube based composites for electronic applications: CNT-conducting polymers, CNT-Cu ” Phys. Stat. Sol. (a) 203 (2006) 1082-1087
    2.S. H. Liao, C. H. Hung, C. C. M. Ma, C. Y. Yen, Y. F. Lin and C. C. Weng “Preparation and properties of carbon nanotube-reinforced vinyl ester-nanocomposite bipolar plates for polymer electrilyte membrane fuel cells” Journal of Power Sources 176 (2008) 175–182
    3.H. T. Kim, T. V. Reshentenko, and H. J. Kweon “Microstructured Membrane Electrode Assembly for DirectMethanol Fuel Cell” Journal of The Electrochemical Societ 154 (2007) B1034-B1040
    4.C.H. Wang, H.Y. Du, Y.T. Tsai, C.P. Chen, C.J. Huang,L.C. Chen, K.H. Chen, H.C. Shih “High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC” J. power source 171 (2007) 55-62
    5.S. K. Wang, F. G. Tseng, T. K. Yeh and C. C. Chieng “Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC” J. power source 167 (2007) 413-419
    6.K. Furukawa, K. Okajima and M. Sudoh “Structural control and impedance analysis of cathode for direct methanol fuel cell” J. power source 139 (2005) 9-14
    7.H. Yamada, T. Hirai, I. Moriguchi, T. Kudo “A highly active Pt catalyst fabricated on 3D porous carbon” J. Power Sources 164 (2007) 538–543
    8.Tatyana V. Reshetenko, H. T. Kim and H. J. Kweon “Cathode structure optimization for air-breathing DMFC by application of pore-forming agents” J. power source 177 (2007) 433-440
    9.Yousef Alyousef and S. C. Yao “Development of a silicon-based wettability controlled membrane for microscale direct methanol fuel cells” Microfluid Nanofluid (2006) 2: 337–344
    10.T. Metz, N. Paust, C. Muller, R. Zengerle, P. Koltay, Sens. Actuators A: Phys. 143 (2008) 49–57.
    11.R. Chen and T.S. Zhao “A novel electrode architecture for passive direct methanol fuel cells” Electrochemistry Communications 9 (2007) 718–724
    12.Zhen Guo and Amir Faghri “Development of planar air breathing direct methanol fuel cell stacks ” J. power source 160 (2006) 1183-1194
    13.W. R. Chang, J. J. Hwang, F. B. Weng and S. H. Chan “Effect of clamping pressure on the performance of a PEM fuel cell” J. Power Sources. 166 (2007) 149.
    14.Jonathan J. Martin et.al “Design and testing of a passive planar three-cell DMFC” Journal of Power Sources 164 (2007) 287–292
    15.T.J. Yen, X. Zhang and C.Y. Wang “A micro methanol fuel cell operating at near room temperature” Appl. Phys. Letter 3 (2003) 4056-4059
    16.G.Q. Lu, C.Y. Wang, T.J. Yen and X. Zhang “Development and characterization of a silicon-based micro direct methanol fuel cell” Electrochimica Acta 49 (2004) 821–828
    17.G.Q. Lu, and C.Y. Wang “Development of High Performance Micro DMFCS and a DMFC Stack” Journal of Fuel Cell Science and Technology 3 (2006) 131-136
    18.C.W. Wang, T.S. Zhao,Q. Ye and J.G. Liu “Experimental investigations of the anode flow field of a micro direct methanol fuel cell” Journal of Power Sources 155 (2006) 291–296
    19.Y.J. Chuang, C.C. Chieng, C. Pan,S.J. Luo and F.G. Tseng “A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell” J. Micromechanics Microengineering. 17 (2007) 915–922.
    20.H.C. Peng, P.H. Chen, H.W. Chen, C.C. Chieng, T.K. Yeh, C.Pan, F.G. Tseng “Passive cathodic water/air management device for micro-direct methanol fuel cells” Journal of Power Sources 195 (2010) 7349-7358.
    21.S. C. Yao, X. Tang, C.C. Hsieh, Y. Alyousef, M. Vladimer, G. K. Fedder, C. H. Amon “Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development” Energy 31 (2006) 636–649.
    22.S. C. Kelley, G. A. Deluga, and W. H. Smyrl 2002 Miniature Fuel Cells Fabricated on Silicon Substrates AIChE Journal : 48 1071-1082
    23.K. Shah, W.C. Shin and R.S. Besser 2003 Novel microfabrication approaches for directly patterning PEM fuel cell membranes J. Power Sources : 123 172-181
    24.S. Motokawa, M. Mohamedi, T. Momma,S. Shojia and T. Osaka 2004 MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC) Electrochemistry Communications : 6 562–565
    25.J. Yeom, G.Z. Mozsgai, B.R. Flachsbart, E.R. Choban, A. Asthana,M.A. Shannon and P.J.A. Kenis 2005 Microfabrication and characterization of a silicon-based millimeter scale,PEM fuel cell operating with hydrogen, methanol, or formic acid Sens. Actuators B: 107 882–891
    26.J. Yeom, R.S. Jayashree, C. Rastogi, M.A. Shannon and P.J.A. Kenis 2006 Passive direct formic acid microfabricated fuel cells J. Power Sources 160 1058–1064
    27.Z. Xiao, G. Yan, C. Feng,P. C H Chan1 and I.M. Hsing 2006 A silicon-based fuel cell micro power system using a microfabrication technique J. Micromech. Microeng. 16 2014–2020
    28.K. B. Min, S. Tanaka and M. Esashi 2006 Fabrication of novel MEMS-based polymer electrolyte fuel cell architectures with catalytic electrodes supported on porous SiO2 J. Micromech. Microeng. 16 505–511
    29.Y. Zhang, J. Lu, S. Shimano, H. Zhou and R. Maeda 2007 Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology Electrochemistry Communications 9 1365–1368
    30.Y. Zhang, J. Lu, H. Zhou, T. Itoh, and R. Maeda 2008 Application of Nanoimprint Technology in MEMS-Based Micro Direct-Methanol Fuel Cell (μ-DMFC) J. MICROELECTROMECHANICAL SYSTEMS 17 1020-1028
    31.Y.H. Seo, Y.H. Cho Micro direct methanol fuel cells and their stacks using a polymer electrolyte sandwiched by multi-window microcolumn electrodes 2009 Sens. Actuators A: 150 87–96
    32.M. Shen, S. Walter and M.A.M. Gijs 2009 Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip J. Power Sources 193 761–765
    33.Wu, Yi-Shiuan; Tseng, Fan-Gang; Tsai, Chuen-Hung; Chieng, Ching-Chang, “Micro and nano structured reaction device for micro DMFC,” Proceedings ofthe 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya City, Hainan, China, 816-819, Jan. 6-9, 2008.
    34.C. Y. Chen, C. S. Wu, C. J. Chou and T. J. Yen 2008 Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature Adv. Funct. Mater. 20 3811-3815.
    35.Y.S. Wu, S.M. Gong, C.H. Wang, H.C. Peng, M.C. Tsai, T.K. Yeh, and F.G. Tseng High Efficient Nanocatalysts Synthesis by A Semi-Reflux Chemical Reduction System 2010 Proceedings of the 2010 5th IEEE NEMS, Xiamen, China, pp.702-705, January 20-23.
    36.國立清華大學 工程與系統科學系 博士論文 民國93年 莊鎮宇 著
    37.M.C. Tsaia, T.K. Yeh, C.Y. Chen and C.H. Tsai 2007 A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell Electrochem. Commun. 9 2299–2303
    38.M.C. Tsaia, T.K. Yeh and C.H. Tsai 2008 Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation Mater. Chem. Phys. 109 422–428.
    39.M.C. Tsaia, T.K. Yeh, Z.Y. Juang and C.H. Tsai 2007 Physical and electrochemical characterization of platinum and platinum–ruthenium treated carbon nanotubesdirectly grown on carbon cloth Carbon 45 383–389.
    40.M.C. Tsai, T.K. Yeh and C.H. Tsai 2011 Methanol Oxidation Efficiencies on Carbon-Nanotube-Supported Platinum and Platinum-Ruthenium Nanoparticles Prepared by Pulsed Electrodeposition International J. Hydrol. Eng., March 21, 2011, accepted.
    41.國立清華大學 工程與系統科學系 碩士論文 利用開放式直流還原系統調控製程參數合成高效能奈米陽極觸媒應用於μDMFC 民國99年 龔欣玫 著
    42.葉宗洸, 電化學原理講義, ESS 453000, 2006.
    43.T. C. Ho, C.J. Chang, P. C. Wang and F. G. Tseng Thermally Stable Sulfonated Nanoporous Aryl Epoxy Resin as Proton Exchange Membranes at Elevated Temperatures IEEE NEMS 2011 Kyoto, Japan ( in press)
    44.L. Yang, W. Li, X. Du and Y. Yang 2010 Effect of Hydrophobicity in Cathode Porous Media on PEM Fuel Cell Performance J. Fuel Cell Science and Technology 7 061012-1-6
    45.S. Park and B. N. Popov 2009 Effect of hydrophobicity and pore geometry in cathode GDL on PEM fuel cell performance Electrochimica Acta 54 3473–3479
    46.J. T. Muller, P. M. Urban, W. F. Holderich 1999 Impedance studies on direct methanol fuel cell anodes J. Power Sources 84 157–160
    47.J.D. Kim, Y.I. Park, K. Kobayashi and M. Nagai 2001 Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell J. Power Sources 103 127–133
    48.M. Ciureanu and R. Roberge 2001 Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes J. Phys. Chem. B 105 3531-3539
    49.X. Yuan, H. Wang, J. Colin Sun and J. Zhang 2007 AC impedance technique in PEM fuel cell diagnosis—A review International Journal of Hydrogen Energy 32 4365–4380
    50.K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou and S. H. Lin 2007 Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst J. Power Sources 164 33–41
    51.M. Ciureanu, S.D. Mikhailenko and S. Kaliaguine 2003 PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy Catalysis Today 82 195–206
    52.P. M. Gomadam and J. W. Weidnern 2005 Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells Int. J. Energy Res. 29 1133–1151
    53.Z. Xie and Steven Holdcroft 2004 Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes J. Electroanalytical Chemistry 568 247–260
    54.T. Schulz, C. Weinmuller, M. Nabavi and D. Poulikakos 2010 Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell J. Power Sources 195 7548–7558
    55.Modern aspects of electrochemistry. No. 32 edited by B.E. Conway, J. O’M. Bockris and Ralph E. White.
    56.Z. Kerner and T. Pajkossy 1998 Impedance of rough capacitive electrodes: the role of surface disorder J. Electroanal. Chem. 448 139-142
    57.M.R. Shoar Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer 2009 On the physical interpretation of constant phase elements Solid State Ionics 180 922–927
    58.G.Q. Lu, C.Y. Wang, T.J. Yen and X. Zhang 2004 Electrochimica Acta 49 821–828.
    59.H.Y. Cha, H.G. Choi, J.D. Nam, Y. Lee, S.M. Cho, E.S. Lee, J.K. Lee and C.H. Chung 2004 Electrochimica Acta 50 795–799.
    60.Y. S. Wu, F. G. Teng and C. H. Tsai Growth and characteristics of vertically-aligned carbon nanotubes by thermal CVD on various Si-based substrates for micro-DMFC The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29 - Dec. 1, 2006, Berkeley, U.S.A.
    61.H. C. Peng, H. S. Khoo and F. G. Tseng Increased Interfacial Strength at Microscale Silicon-Polymer Interface by Nano-Wires Assisted Micro-Sandglass Shaped Interlocks JJAP (accepted on 2011 Dec.7)
    62.I. T. Kim, J. Choi and S. C. Kim 2007 Blend membranes of Nafion/sulfonated poly(aryl ether ketone) for direct methanol fuel cell J. Membr. Sci. 300 28.
    63.J. Dolbow and M. Gosz 1996 Effect of out-of-plane properties of a polyimide file on the stress fields in microelectronic structures Mechanics of Materials 23 p.314
    64.G.Y. Lee, K. Cheung, W. Chang and L.P. Lee 2000 MECHANICAL INTERLOCKING WITH PRECISELY CONTROLLED NANO- AND MICROSCALE GEOMETRIES FOR IMPLANTABLE MICRODEVICES: 1st Annual Int. IEEE-EMBS Conf., p. 1.
    65.K. Sato D. Uchikawa and M. Shikida 2001 “Change in orientation-dependent etching properties of single-crystal silicon caused by a surfactant added to TMAH solution”, Sensors and Materials 13-5 285-291.
    66.H. Tanaka, Y. Abe, K. Inoue, M. Shikida, and K. Sato 2003 “Effect of ppb-level metal impurities in KOH solution on the etching of Si {110} and {100},” Sensors & Materials, 15-1, 43-51.
    67.Prem Pal, M.A. Gosalvez and K. Sato 2010 Silicon micromachining based on surfactant-added tetramethyl ammonium hydroxide: Etching mechanism and advanced application, Japanese J. Applied Physics, 49 #56702.
    68.C. M. Lin, W. C. Chen and W. Fang 2007 Removable fast package technology for MEMS devices using polymer connectors and silicon sockets J. Micromech. Microeng. 17 2461.
    69.T. Metz, N. Paust, C. Muller, R. Zengerle, P. Koltay 2008 Passive water removal in fuel cells by capillary droplet actuation Sens. Actuators A: Phys. 143 49–57.
    70.M. M. Weislogel and S. Lichter 2008 Capillary flow in an interior corner J. Fluid. Mech. 373 349-378.
    71.Q. Zhanga, X. Wanga, Y. Zhua, Y. Zhoua, X. Qiub, Li. Liua 2009 Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments J. Power Sources 192 494–501
    72.Z.Y. Juanga, I.P. Chien, J.F. Lai, T.S. Lai and C.H. Tsai “The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method” Diamond and Related Materials 13 (2004) 1203–1209
    73.S. P. Murarka, D. B. Fraser, W. S. Lindenberger and A. K. Sinha “Oxidation of tantalum disilicide on polycrystalline silicon” J. Appl. Phys. 57 (1980) 3241-3246
    74.S.P. Murarka and D. B. Fraser “Thin film interaction between titanium and polycrystalline silicon” J. Appl. Phys. 51 (1980) 342-350

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE