研究生: |
黃文欽 Huang, Wen-Qin |
---|---|
論文名稱: |
聯網電動車感應馬達驅動系統 GRID-CONNECTED ELECTRIC VEHICLE INDUCTION MOTOR DRIVE SYSTEM |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
曾萬存
Tseng, Wan-Tsun 陳盛基 Chen, Seng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 電動車 、感應馬達 、間磁場導向控制控制 、電池 、超電容 、電網至車輛 |
外文關鍵詞: | EV, IM, indirect field-oriented control, battery, SC, G2V |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一聯網電動車感應馬達驅動系統,其具有電池及超電容混合式儲能源及輔助電源系統。聯網操作含電網至車輛及車輛至電網操作。
首先建立間接式磁場控制之感應馬達系統及其弱磁驅控。為使感應馬達驅控具良好操作性能,完成估測馬達之關鍵參數。另外,採 (1/ ) 法調整激磁電流及適當設定角速度滑差實現額定轉速以上之弱磁控制。
感應馬達驅動系統由電池與超電容通過雙向單臂降壓/升壓介面轉換器供電,電池透過其介面轉換器執行變動直流鏈電壓測策略來提高馬達驅動之操控性能。此外,加入超電容可使電池能量轉換特性增強。經由所提濾波電流分離方法,超電容可有效於電動車啟動或爬坡下協助電池提供快速及峰值功率。
於閒置聯網模式中,雙向CLLC 隔離轉換器提供電器隔離及能量轉換。於電網至車輛操作中,透過單相及三相切換式整流器為主之車載充電器,執行車載電池充電,並具有良好之電力品質。對於車輛致電網操作中,車載電池可藉由相同之變頻器提供預設功率回至三相電網。
最後,對於開發之輔助電源系統,包含48V、12V及5V 低壓直流電源,供電於車載電子性負載。雙向交錯式降壓/升壓轉換器建構於馬達側之直流鏈及低電壓48V直流鏈間。此外,多輸出之反馳式轉換器提供12V及5V直流電源。
This thesis develops a grid-connected electric vehicle (EV) with battery and super- capacitor (SC) hybrid energy storage device and auxiliary power system. The grid- connected operations include grid-to-vehicle (G2V) and vehicle-to-grid (V2G).
The indirect field-oriented (IFO) induction motor (IM) drive and field-weakening operation are first present. To let the IFO IM drive processes satisfactory operating characteristics, the motor parameter estimation procedure is done. In addition, adopting the (1/ ) method to adjust flux current command and properly setting the angular speed slip to implement the field-weakening operation above the rated speed.
The battery and SC are powered the EV IM drive via bidirectional one-leg buck/boost converters. To yield improved the EV driving performance, the variable DC-link voltage strategy is applied via the battery interface converter. Moreover, the battery energy conversion characteristics enhance by adding the SC. Through the filter-based current separation approach, the SC can assist the battery to provide the fast and peak power during the EV starting or climbing condition.
In the idle EV grid-connected case, a bidirectional CLLC resonant converter provide the galvanic isolation and power transmission. In G2V operation, the EV battery can be charged from the single-phase or three-phase mains with good line drawn power quality via the established switch-mode rectifiers (SMRs). As to the V2 operations, the battery can send the preset power back to the 3P3W utility grid via the developed PWM inverter.
Finally, for the developed auxiliary power system (APS), including the 48V, 12V and 5V low voltage DC bus to supply EV electronic loads. The bidirectional interleaved buck/boost converter is constructed between the motor DC-link voltage bus and low voltage 48V bus and the multi-output flyback converter provide 12V and 5V DC sources.
A. Electric Vehicles
[1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[2] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, Jan. 2011.
[3] J. de Santiago, H. Brnhoff, B. Ekergurd, S. Eriksson, S. Ferhatovic, R. Waters and H. Leijon., “Electrical motor drivelines in commercial all-electric vehicles: A review,” IEEE Trans. Veh. Technol. vol. 61, no. 2, pp. 475-484, Feb. 2012.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[5] L. Shao, A. E. H. Karci, D. Tavernini, A. Sorniotti and M. Cheng, “Design approaches and control strategies for energy-efficient electric machines for electric vehicles - a review,” IEEE Access, vol. 8, pp. 116900-116913, 2020.
[6] S. Saponara, C. H. T. Lee, N. X. Wang and J. L. Kirtley, “Electric drives and power chargers: recent solutions to improve performance and energy efficiency for hybrid and fully electric vehicles,” IEEE Veh. Technol. Mag., vol. 15, no. 1, pp. 73-83, March 2020.
[7] G. Vijay Kumar, J. X. Zhuang, M. Z. Lu and C. M. Liaw, “Development of an electric vehicle synchronous reluctance motor drive,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5012-5024, May 2020.
[8] M. Ehsani, K. V. Singh, H. O. Bansal and R. T. Mehrjardi, “State of the art and trends in electric and hybrid electric vehicles,” in Proc. IEEE, vol. 109, no. 6, pp. 967-984, June 2021.
[9] R. Deng, Y. Liu, W. Chen and H. Liang, “A survey on electric buses—energy storage, power management, and charging scheduling,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 9-22, Jan. 2021.
[10] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 2nd ed., New York: Wiley-IEEE, 2002.
[11] V. T. Buyukdegirmenci, A. M. Bazzi and P. T. Krein, “Evaluation of induction and permanent-Magnet synchronous machines using drive-cycle energy and loss minimization in traction applications,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 395-403, Jan.-Feb. 2014.
[12] A. Dehghani kiadehi, K. El Khamlichi Drissi and C. Pasquier, “Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2980-2990, April 2016.
[13] G. Sieklucki, “An investigation into the induction motor of tesla model S vehicle,” in Proc. IEEE SME., 2018, pp. 1-6.
[14] M. J. Akhtar and R. K. Behera, “Space vector modulation for distributed inverter-fed induction motor drive for electric vehicle application,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 1, pp. 379-389, Feb. 2021.
B. Induction Motor Drives
[15] I. Kioskeridis and N. Margaris, “Loss minimization in scalar-controlled induction motor drives with search controllers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 213-220, March. 1996.
[16] A. Munoz-Garcia, T. A. Lipo and D. W. Novotny, “A new induction motor V/f control method capable of high-performance regulation at low speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 813-821, Aug. 1998.
[17] A. Sayed-Ahmed and N. A. O. Demerdash, “Fault-tolerant operation of delta-connected scalar- and vector-controlled AC motor drives,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3041-3049, June. 2012.
[18] D. S. Zinger, F. Profumo, T. A. Lipo and D. W. Novotny, “A direct field-oriented controller for induction motor drives using tapped stator windings,” IEEE Trans. Power Electron., vol. 5, no. 4, pp. 446-453, Oct. 1990.
[19] C. M. Liaw, Y. S. Kung and C. M. Wu, “Design and implementation of a high-performance field-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 38, no. 4, pp. 275-282, Aug. 1991.
[20] J. A. Santisteban and R. M. Stephan, “Vector control methods for induction machines: an overview,” IEEE Trans. Educ. vol. 44, no. 2, pp. 170-175, May 2001.
[21] J. K. Seok, S. I. Moon and S. K. Sul, “Induction machine parameter identification using PWM inverter at standstill,” IEEE Trans. Energy Convers., vol. 12, no. 2, pp. 127-132, June. 1997.
[22] A. Gastli, “Identification of induction motor equivalent circuit parameters using the single- phase test,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 51-56, March. 1999.
[23] J. K. Seok and S. K. Sul, “Induction motor parameter tuning for high-performance drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 35-41, Feb. 2001.
[24] S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn and P. L. Chapman, “Experimental characterization procedure for use with an advanced induction machine model,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 48-56, March. 2003.
[25] M. Shin and D. Hyun, “Online identification of stator transient inductance in rotor-flux- oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2018-2023, Aug. 2007.
[26] A. Boglietti, A. Cavagnino, L. Ferraris and M. Lazzari, “Induction motor equivalent circuit including the stray load losses in the machine power balance,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 796-803, Sept. 2008.
[27] F. Alonge, M. Cirrincione, M. Pucci and A. Sferlazza, “Input–output feedback linearization control with on-line MRAS-based inductor resistance estimation of linear induction motors including the dynamic end effects,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 254-266, Feb. 2016.
[28] J. Tang, Y. Yang, L. Diao, J. Chen, Y. Chang and Z. Liu, “Parameter identification of induction motors for railway traction applications,” in Proc. IEEE ECCE, 2018.
[29] X. Xu and D. W. Novotny, “Selecting the flux reference for induction machine drives in the field weakening region,” in Proc. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991.
[30] M. S. Huang and C. M. Liaw, “Improved field-weakening control for IFO induction motor,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2, pp. 647-659, April. 2003.
[31] Z. Dong, Y. Yu, W. Li, B. Wang and D. Xu, “Flux-weakening control for induction motor in voltage extension region: torque analysis and dynamic performance improvement,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3740-3751, May 2018.
[32] J. Su, R. Gao and I. Husain, “Model predictive control based field-weakening strategy for traction EV used induction motor,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2295-2305, May-June. 2018.
[33] I. Miki, O. Nakao and S. Nishiyama, “A new simplified current control method for field oriented induction motor drives,” in Proc. Conference Record of the IEEE Industry Applications Society Annual Meeting, 1989, pp. 390-395 vol.1.
[34] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[35] D. G. Holmes, B. P. McGrath and S. G. Parker, “Current regulation strategies for vector-controlled induction motor drives,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3680-3689, Oct. 2012.
[36] J. Rodriguez, J. Pontt, C.A. Silva, P. Correa, P. Lezana, P. Cortes and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, Feb. 2007.
[37] C. M. Liaw and F. J. Lin, “A robust speed controller for induction motor drives,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 308-315, June. 1994.
[38] C. M. Liaw, Y. M. Lin and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1136-1147, Dec. 2001.
[39] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy Syst., vol. 10, no. 3, pp. 375-383, June.2002.
[40] J. Talla, V. Q. Leu, V. Šmídl and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8532-8542, Nov. 2018.
[41] E. S. de Santana, E. Bim and W. C. do Amaral, “A predictive algorithm for controlling speed and rotor flux of induction motor,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4398-4407, Dec. 2008.
[42] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performances of fuzzy-logic-based indirect vector control for induction motor drive,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1219-1225, Sept.-Oct. 2002.
[43] M. Masiala, B. Vafakhah, J. Salmon and A. Knight, “Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive,” in Proc. IEEE Industry Applications Annual Meeting, 2007, pp. 1008-1014.
[44] C. M. Liaw and J. B. Wang, “Design and implementation of a fuzzy controller for a high performance induction motor drive,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 4, pp. 921-929, Aug. 1991.
[45] D. Casadei, G. Serra and K. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, July. 2000.
[46] C. L. Toh, N. R. N. Idris and A. H. M. Yatim, “New torque and flux controllers for direct torque control of induction machines,” in Proc. The Fifth International Conference on Power Electronics and Drive Systems, 2003.
[47] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug. 2004.
[48] Z. Sorchini and P. T. Krein, “Formal derivation of direct torque control for induction machines,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1428-1436, Sept. 2006.
[49] T. Schoenen, M. S. Kunter, M. D. Hennen and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conference, 2010, pp. 1-5.
[50] C. Yu, J. Tamura and R. D. Lorenz, “Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[51] S. Sridharan and P. T. Krein, “Optimizing variable DC link voltage for an induction motor drive under dynamic conditions,” in Proc. ITEC, 2015, pp. 1-6.
[52] S. Wongprasert, T. Sapaklom and M. Konghirun, “Efficiency improvement of traction drive system with induction motor using dynamic DC-bus voltage adjustment over a wide speed range operation,” in Proc. IEEE ICEMS, 2020, pp. 940-944.
C. Energy Storage System in EVs
[53] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June. 2008.
[54] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, March. 2011.
[55] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf and T. A. Khan, “Comparison of characteristics - lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. UKSim, 2015, pp. 444-450.
[56] G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee and J. L. Morris, “Operating principles of the ultracapacitor,” IEEE Trans. Magn., vol. 25, no. 1, pp. 102-106, Jan. 1989.
[57] P. J. Grbovic, P. Delarue, P. Le Moigne and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, Dec. 2012.
[58] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, March. 2016.
[59] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 806-820, April. 2007.
[60] J. Cao and A. Emadi, “A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conference, 2009, pp. 941-946.
[61] H. Xiaoliang, T. Hiramatsu and H. Yoichi, “Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles,” in Proc. EVS27, 2013, pp. 1-6.
[62] F. Ju, Q. Zhang, W. Deng and J. Li, “Review of structures and control of battery-supercapacitor hybrid energy storage system for electric vehicles,” in Proc. CASE, 2014, pp. 143-148.
[63] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, March. 2017.
[64] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, June. 2019.
[65] S. Dusmez and A. Khaligh, “A compact and integrated multifunctional power electronic interface for plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5690-5701, Dec. 2013.
[66] R. Hou and A. Emadi, “Evaluation of integrated active filter auxiliary power modules in electrified vehicle applications,” in Proc. IEEE ECCE, 2015.
[67] Y. Tang, J. Lu, B. Wu, S. Zou, W. Ding, and A. Khaligh, “An integrated dual-output isolated converter for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 966-976, Feb. 2018.
[68] C. Gillmor: (2018). How to design multi-kW converters for electric vehicles [Power Point slides].Available:https://training.ti.com/how-design-multi-kw-dcdc-converters-electric-
vehicles-evs
D. DC/DC Converters
[69] Kaiwei Yao, Yang Qiu, Ming Xu and F. C. Lee, “A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1017-1024, Sept. 2005.
[70] D. Kwon and G. A. Rincon-Mora, “Single-inductor–multiple-output switching DC-DC converters,” IEEE Trans. Circuits Syst., II: Exp. Briefs, vol. 56, no. 8, pp. 614-618, Aug. 2009.
[71] H. Ardi, A. Ajami, F. Kardan and S. N. Avilagh, “Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4878-4888, Aug. 2016.
[72] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron. vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[73] Y. Bao, L. Y. Wang, C. Wang, J. Jiang, C. Jiang and C. Duan, “Adaptive feedforward compensation for voltage source disturbance rejection in DC-DC converters,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 344-351, Jan. 2018.
[74] A. Ayachit and M. K. Kazimierczuk, “Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 66, no. 2, pp. 262-266, Feb. 2019.
[75] S. Inoue and H. Akagi, “A bi-directional DC/DC converter for an energy storage system,” in Proc. APEC, 2007, pp. 761-767.
[76] M. B. Camara, H. Gualous, F. Gustin, A. Berthon and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, Feb. 2010.
[77] D. Hamza, M. Pahlevaninezhad and P. K. Jain, “Implementation of a novel digital active EMI technique in a DSP-based DC-DC digital controller used in electric vehicle (EV),” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3126-3137, July. 2013.
[78] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Industry Appl., vol. 51, no. 4, pp. 3442-3452, Aug. 2015.
[79] Y. Cho and J. Lai, “High-efficiency multiphase DC-DC converter for fuel-cell-powered truck auxiliary power unit,” IEEE Trans. Veh. Technol., vol. 62, no. 6, pp. 2421-2429, July. 2013.
[80] M. Vasiladiotis and A. Rufer, “A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3213-3222, May 2015.
[81] G. Balen, A. R. Reis, H. Pinheiro and L. Schuch, “Modeling and control of interleaved buck converter for electric vehicle fast chargers,” in Proc. COBEP, 2017, pp. 1-6.
[82] M. K. Kazimierczuk and S. T. Nguyen, “Small-signal analysis of open-loop PWM flyback dc-dc converter for CCM,” in Proc. IEEE National Aerospace and Electronics Conference. NAECON 1995, pp. 69-76.
[83] D. Ma, W. H. Ki, C. Y. Tsui and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
[84] B. Eckardt, A. Hofmann, S. Zeltner and M. Maerz, “Automotive powertrain DC/DC converter with 25kW by using SiC Diodes,” in Proc. ICIPS, 2006, pp. 1-6.
[85] J. Biela, M. Schweizer, S. Waffler and J. W. Kolar, “SiC versus Si-evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors,” in IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2872-2882, July. 2011.
[86] Y. Takatsuka, H. Hara, K. Yamada, A. Maemura and T. Kume, “A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices,” in Proc. IPEC-Hiroshima 2014 - ECCE ASIA, 2014, pp. 1898-1903.
E. Grid-Connected Operations
[87] M. Yilmaz and P. T. Krein, “Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[88] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[89] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-In electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[90] S. S. Williamson, A. K. Rathore and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[91] K. Hu and C. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[92] V. Monteiro, J. G. Pinto and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, March. 2016.
[93] G. R. Chandra Mouli, J. Schijffelen, M. van den Heuvel, M. Kardolus and P. Bauer, “A 10 kW solar-powered bidirectional EV Charger compatible with Chademo and COMBO,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1082-1098, Feb. 2019.
[94] M. C. Kisacikoglu, M. Kesler and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, March. 2015.
[95] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June. 2015.
[96] K. Fahem, D. E. Chariag and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. GECS, 2017, pp. 1-6.
[97] S. Khan, M. S. Alam, M. S. Jamil Asghar, M. A. Khan and A. Abbas, “Recent development in Level 2 charging system for xEV: a review,” in Proc. CCTES, 2018, pp. 83-88.
[98] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, March. 2017.
[99] G. Su, “Comparison of Si, SiC, and GaN based isolation converters for onboard charger applications,” in Proc. ECCE, 2018, pp. 1233-1239.
[100] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, April. 2019.
[101] I. Subotic, N. Bodo and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, Feb. 2016.
[102] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[103] E. I. Pool-Mazun, J. J. Sandoval, P. N. Enjeti and I. J. Pitel, “An integrated solid-state transformer with high-frequency isolation for EV fast-charging applications,” IEEE J. Emerg. Sel. Topics Ind. Electron., vol. 1, no. 1, pp. 46-56, July. 2020.
[104] C. S. Wang, O. H. Stielau and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[105] W. Li, H. Zhao, J. Deng, S. Li and C. C. Mi, “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4429-4439, June. 2016.
[106] D. Vincent, P. S. Huynh, N. A. Azeez, L. Patnaik and S. S. Williamson, “Evolution of hybrid inductive and capacitive AC links for wireless EV charging - a comparative overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 1060-1077, Dec. 2019.
F. Switch-Mode Rectifiers
[107] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[108] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108-115, Feb. 2005.
[109] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[110] B. Singh, S. Singh, A. Chandra and K. Al-Haddad, “Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540-556, Nov. 2011.
[111] Y. Cho and J. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165-175, Jan. 2013.
[112] B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June. 2004.
[113] G. Chen and K. M. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April. 2005.
[114] T. Soeiro, T. Friedli and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. APEC, 2012.
[115] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[116] J. Khodabakhsh and G. Moschopoulos, “A three-phase AC-DC converter with transformer isolation and reduced number of switches,” in Proc. CCECE, 2017.
G. PWM Inverters
[117] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
[118] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, June 2007.
[119] J. Guo, J. Ye and A. Emadi, “DC-link current and voltage ripple analysis considering antiparallel diode reverse recovery in voltage source inverters,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5171-5180, June. 2018.
[120] S. M. Tayebi, H. Hu and I. Batarseh, “Advanced DC-Link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 307-317, Jan. 2019.
[121] Y. Sozer, D. A. Torrey and S. Reva, “New inverter output filter topology for PWM motor drives,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1007-1017, Nov. 2000.
[122] T. C. Y. Wang, Z. Ye, G. Sinha and X. Yuan, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, pp. 779-784.
[123] E. Twining and D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 888-895, May 2003.
[124] D. Solatialkaran, F. Zare, T. K. Saha and R. Sharma, “A novel approach in filter design for grid-connected inverters used in renewable energy systems,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 154-164, Jan. 2020.
[125] J. M. Erdman, R. J. Kerkman, D. W. Schlegel and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltages,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 250-259, April 1996.
[126] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, Sept. 2000.
[127] B. Kwak, J. Um, and J. Seok, “Direct active and reactive power control of three-phase inverter for AC motor drives with small DC-link capacitors fed by single-phase diode rectifier,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3842-3850, July-Aug. 2019.
[128] A. Amerise, M. Mengoni, L. Zarri, A. Tani, S. Rubino, and R. Bojoi, “Open-end windings induction motor drive with floating capacitor bridge at variable DC-link voltage,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2741-2749, May 2019.
[129] S. De Caro, S. Foti, T. Scimone, A. Testa, G. Scelba, M. Pulvirenti, and S. Russo, "Motor overvoltage mitigation on SiC MOSFET drives exploiting an open-end winding configuration," IEEE Trans. Power Electron. vol. 34, no. 11, pp. 11128-11138, Nov. 2019.
H. Isolation DC/DC Converter
[130] B. Zhao, Q. Song, W. Liu and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091-4106, Aug. 2014.
[131] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, March. 2017.
[132] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan and E. D. Baumann, “Performance characterization of a high-power dual active bridge DC-to-DC converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992.
[133] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, July 2012.
[134] D. Das, N. Weise, K. Basu, R. Baranwal and N. Mohan, “A bidirectional soft-switched DAB-based single-stage three-phase AC–DC converter for V2G application,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 186-199, March 2019.
[135] J. Jung, H. Kim, M. Ryu and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,’’ IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
[136] S. Ryu, D. Kim, M. Kim, J. Kim and B. Lee, “Adjustable frequency–duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5354-5362, Oct. 2014.
[137] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[138] G. Liu, Y. Jang, M. M. Jovanović and J. Q. Zhang, “Implementation of a 3.3-kW DC-DC converter for EV on-board charger employing the series-resonant converter with reduced-frequency-range control,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4168-4184, June 2017.
[139] H. Zeng, N. S. González-Santini, Y. Yu, S. Yang and F. Z. Peng, “Harmonic burst control strategy for full-bridge series-resonant converter-based EV charging,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 4064-4073, May 2017.
[140] S. Zou, J. Lu, A. Mallik and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-In electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998-1005, April 2018.
[141] A. Sankar, A. Mallik and A. Khaligh, “Extended harmonics based phase tracking for synchronous rectification in CLLC converters,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6592-6603, Aug. 2019.
[142] N. D. Dao, D. Lee and Q. D. Phan, “High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10455-10465, Oct. 2020.
I. Others
[143] “Digital signal controller TMS320F28379 data sheet,” Available: https://www.ti.com/ lit/ds/symlink/tms320f28379d.pdf, 2017.
[144] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell. com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.