簡易檢索 / 詳目顯示

研究生: 李祐旻
Li, You-Min.
論文名稱: 高解析度低輸出電壓漣漪的數位式脈波寬度調變控制直流降壓器
A novel high-resolution and low-ripple digitally controlled PWM for DC-DC buck converter
指導教授: 張彌彰
Chang, Mi-Chang
口試委員: 徐永珍
Hsu, Yung-Chen
盧向成
Lu, Hsiang-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 106
中文關鍵詞: 數位脈寬調變直流-直流降壓器數位控制低漣波高解析度
外文關鍵詞: DPWM, DC-DC, buck converter, digital control, low ripple, high resolution
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直流-直流轉換器是現今移動電子設備中的重要元件,因為它可以將電池的電源轉換成不同電壓值,以符合當今應用電子產品的需求。為了延長電池的續航力,此轉換器應採用單晶片實現且需產生準確的輸出電壓、較小的電壓漣波、較高的轉換效率以及較小的功率消耗和面積,從而增強系統性能並降低成本。
    在DC-DC轉換器設計的不同方法中,數位脈衝寬度調製(DPWM)是最近先進電源管理的研究重點之一,因為其具有以下幾點優點:易於設計、可使用現有的數位設計流程、容易轉換至下世代半導體製程、較小的面積以及較低的功率消耗。為了提高輸出電壓的解析度並抑制輸出電壓的漣波,DPWM電路通常需要較大的位元數目來實現。但是,使用較大的位元數目會增加電壓轉換器的功率消耗和面積,因而降低DPWM技術的實用性。
    在本文中,為了不要直接實現較大位元數目的硬體,我們提出了一種新的方法來提高有效位元數目。如此一來,既有大位元數目架構的優點,並同時保持較小的功率消耗和面積。本文所提出的方法綜合Dither方法和RC方法的概念,通過額外控制電路達成精確地調控脈衝寬度。本文也描述了如何設計並實現此控制電路,以一個3位元DPWM轉換器產生有效5位元的輸出電壓準位。此外,我們也以模擬的方式與其他文獻中的轉換器進行比較,證明此方法的優越性,即使我們使用的是較成熟的半導體技術,比較結果也顯示我們的方法在各種性能指標上的優勢。


    DC-DC converter is a key in modern mobile electronic device since it can covert the power supply of a single battery to different voltage levels that are needed in today’s applications. To minimize battery recharging time, enhance system performance and reduce cost, an on-chip DC-DC converter should be designed to produce accurate voltage level, small ripple, high conversion efficiency and small power consumption and area.
    Among different approaches for DC-DC converter design, Digital Pulse-Width-Modulation (DPWM) is one of the focuses in recent researches, due to ease of design, available digital design flow and good scalability to small area and power for advanced technologies. To improve output voltage resolution and inhibit output ripple, large number of bits are usually required. This large number of bits, however, increased the power consumption and area of the converter, and reduce the attractiveness of the DPWM approach.
    In this thesis, we proposed a novel approach to improve the effective number of bits without actually implementing the extra bits, thus taking the advantages of large bits while maintaining small power and area. It is achieved by adding extra control circuits to modify the pulse width accurately, using both Dither method and RC method. The design and implementation of control circuit enables a 3-bit DPWM converter to produce 5-bit effective output level was also developed in this thesis. Furthermore, a baseline simulation flow was established to compare our approach to those converters available in the literatures. It demonstrates the advantages of our approach in various performance measures even though we are using a more matured technology.

    摘要 I Abstract II 致謝 III Table of contents IV Lists of Figures VIII Lists of Tables XIV Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Background of DPWM 3 1.3. Related works and Proposal 4 1.4. Organization of the thesis 5 Chapter 2 Background of DPWM DC-DC buck converter 7 2.1. Introduction of DC-DC buck converter 7 2.1.1. Architectures of DC-DC buck converter 8 2.1.2. Switching modes of DC-DC buck converter 11 2.1.3. Current control modes of DC-DC buck converter 13 2.2. Introduction of pulse width modulation 15 2.2.1. Principle of pulse width modulation 15 2.2.2. Analog pulse width modulation (APWM) 16 2.2.3. Digital pulse width modulation (DPWM) 18 2.3. Chapter summary 19 Chapter 3 Architecture of DPWM DC-DC buck converter 21 3.1. Output stage 22 3.2. Sample-and-hold circuit 25 3.3. Analog to digital converter (ADC) 26 3.3.1. Counter ADC 27 3.3.2. Flash ADC 28 3.3.3. Pipeline ADC 29 3.3.4. SAR ADC 30 3.4. Digital compensator circuit 33 3.4.1. Digital PID controller 33 3.4.2. Tuning method for PID compensator 35 3.5. Digital pulse width modulation (DPWM) 36 3.5.1. Delay-line DPWM generator 37 3.5.2. Counter-based DPWM generator 38 3.6. Chapter summary 40 Chapter 4 Implementation approaches 41 4.1. Dither method 42 4.1.1. Dither patterns 44 4.1.2. Dither ripple estimate 45 4.1.3. Dither generator scheme 46 4.2. Negative dither method 47 4.2.1. Harmonic effects by Negative dither method 48 4.2.2. Negative dither generator scheme 48 4.3. RC method 50 4.3.1. Operation principle and scheme 51 4.3.2. Resolution estimation 52 4.4. Proposed integrated method 55 4.4.1. Concept and principle 56 4.4.2. Scheme of proposed integrated method 58 4.5. Chapter summary 59 Chapter 5 Implementation and simulation results 60 5.1. Conventional DPWM DC-DC buck converter 61 5.1.1. Output stages 62 5.1.2. Analog to digital converter (ADC) 65 5.1.3. Digital PID controller 69 5.1.4. Digital pulse width modulation (DPWM) 73 5.1.5. Simulation results 76 5.2. DPWM DC-DC buck converter with novel methods 78 5.2.1. Dither method 78 5.2.2. Negative dither method 83 5.2.3. RC method 86 5.2.4. Proposed integrated method 89 5.2.5. Performance tolerance of Proposed integrated method 95 5.3. Chapter summary 99 Chapter 6 Conclusion and future work 100 6.1. Conclusion 100 6.2. Future work 103 Reference 104

    [1] A.V. Peterchev and S.R. Sanders, “Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters”, IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, 2003.
    [2] Jingyang Fang, Xu Yang, Lei Zhang and Yi Tang, “An Optimal Digital Pulse-Width-Modulated Dither Technique to Enhance the Resolution of High-Frequency Power Converters”, IEEE Transactions on Power Electronics, Vol. 32, No. 9, pp. 7222-7232, 2017.
    [3] Yudai Furukawa, Hirokazu Nakamura, Haruhi Eto, Fujio Kurokawa, “A Novel High Resolution DPWM Circuit for High Frequency Digitally Controlled DC-DC Converter”, IEEE Energy Conversion Congress and Exposition, pp. 1396-1400 , 2018.
    [4] Y. Smirnov, V. Subotskaya, M. Tulupov, E. Bodano, “High Speed DPWM for Digital Power Converter Controller”, 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 87-91, 2019.
    [5] Shubha Rao K., Veena S. Chakravarthi, “Design and Performance Analysis of Digital Control Laws for Low Power High Frequency Switching Power Supply”, IEEE 2nd International Conference on Power and Energy Applications, pp. 51-55, 2019.
    [6] Nan Chen, Tingcun Wei, Jianfu Liu, Jiafeng Jin, Xiaomin Wei, “A Digital Controller IC for High Frequency DC-DC Switching Converters”, 14th IEEE Conference on Industrial Electronics and Applications, pp. 1645-1648, 2019.
    [7] Tae-Hyeong Kim, Dae-Jin Kim, Hyeon-Sam Shin, Sang-Ho Lee, Jae-Won Suh, Byung-Do Yang, “Low Power Digital PWM Buck Converter With a Clock-Gating Shift-Register” International Conference on Electronics, Information, and Communication, 2019.
    [8] Bipin Chandra Mandi, Santanu Kapat, Amit Patra, “Unified Digital Modulation Techniques for DC–DC Converters Over a Wide Operating Range”, IEEE Transactions on Circuits and Systems–I: Regular Papers, Vol. 65, No. 4, pp. 1442-1453, April 2018.
    [9] Filipe Guimarães Russo Ramos, Tales Cleber Pimenta, Luís Henrique Carvalho Ferreira, “Design of a Low-Cost and High-Performance Digital PWM Controller for DC-DC Converters”, IEEE 9th Latin American Symposium on Circuits & Systems, 2018.
    [10] Timur Vekslender, Eli Abramov, Yevgeny Lazarev, Mor Mordechai Peretz, “Fully-Integrated Digital Average Current-Mode Control 12V-to-1.xV Voltage Regulator Module IC”, IEEE Applied Power Electronics Conference and Exposition , pp. 2043- 2050, 2017
    [11] Xia Du, Chi-Seng Lam, Sai-Weng Sin, Man-Kay Law, Franco Maloberti, Man-Chung Wong, U Seng-Pan, Rui Paulo Martins, “A Digital PWM Controlled KY Step-Up Converter Based on Frequency Domain ΣΔ ADC”, IEEE 26th International Symposium on Industrial Electronics , pp. 561-564, 2017.
    [12] Wei-Cheng Chen, Chao-Chyun Chen, Chia-Yu Yao, Rong-Jyi Yang, “A Fast-Transient Wide-Voltage-Range Digital-Controlled Buck Converter with Cycle-Controlled DPWM”, IEEE Transactions on Very Large Scale Integration Systems, Vol. 24, No. 1, pp. 17-25, 2016.
    [13] Chao-Ying Wang, Yang-Chieh Ou, Chih-Feng Wu, Muh-Tian Shiue, “A Voltage-Mode DC-DC Buck Converter with Digital PID Controller”, 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2322-2326, 2015.
    [14] Chien-Hung Tsai, Chun-Hung Yang, Jiunn-Hung Shiau, Bo-Ting Yeh, “Digitally controlled switching converter with automatic multimode switching”, IEEE Transactions on Power Electronics, vol. 29 , no. 4, pp. 1830-1839, 2014.
    [15] Deng-Yuan Guo, “Design and Implementation of PWM Driver IC”, 2010
    [16] Sang-Yun Kim et al., “Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications”, IEEE Transactions on Power Electronics, Vol. 33, No. 2, 2018
    [17] Bo Li, Shuibao Guo, Xuefang Lin-Shi, Bruno Allard, “Design and Implementation of the Digital Controller for Boost Converter based on FPGA”, IEEE International Symposium on Industrial Electronics, 2011

    QR CODE