簡易檢索 / 詳目顯示

研究生: 蔡庭榮
Tsai, Ting-Jung
論文名稱: 共價改質與分析單壁奈米碳管薄膜表面並應用於有機光伏電池
Fabrication and Characterization of Transparent Thin Films Based on Functionalized Single-walled Carbon Nanotubes for Photovoltaic Cells
指導教授: 王本誠
Wang, Pen-Cheng
口試委員: 林滄浪
Lin, Tsang-Lang
吳劍侯
Wu, Chien-Hou
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 單壁奈米碳管奈米碳管薄膜有機光伏電池共價改質
外文關鍵詞: Carbon Nanotubes, Film, Photovoltaic Cells, Functionalized
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先探討共價改質單壁奈米碳管溶液的分散性。我們使用微波合成技術取代傳統攪拌方式,快速合成聚2-胺基苯磺酸改質管壁具苯胺的奈米碳管,將合成時間從3天縮短為20分鐘即可得到產物,其改質後的奈米碳管可以穩定分散於有機溶液或去離子水中半年以上。由FTIR、拉曼、元素分析等儀器結果可以證實改質後奈米碳管表面有導入親水性官能基磺酸根。本實驗使用噴霧塗佈製作奈米碳管薄膜,並利用SEM、AFM、四點探針等儀器探討2-胺基苯磺酸改質後奈米碳管薄膜表面特性及電性,證實改質後奈米碳管薄膜有更好的均勻性,且可以製作出厚度低、高穿透度之奈米碳管薄膜。為了提升奈米碳管薄膜之導電性,我們使用微波合成技術掺雜PEDOT至改質奈米碳管上,由四點探針量測其片電阻值並由厚度計算其導電率,發現經過表面改質後的奈米碳管,其導電率都有上升的趨勢,其中最好樣品的平均導電率為~108 S/cm,穿透率為89%,此結果可以證明改質後的奈米碳管薄膜確實可以改善碳管薄膜電荷傳遞的狀況,進而提升薄膜的電性。
    我們將PEDOT:PASA改質之奈米碳管薄膜置於有機太陽能電池中作電洞傳輸層,發現奈米碳管可以穿刺於PEDOT:PSS層中,提升電洞傳輸效率,我們將完成之太陽能電池元件置於模擬太陽光譜量測系統下,量測太陽能電池元件特性,分析其開路電壓、短路電流、填充因子及能量轉換效率數據,並嘗試將改質後奈米碳管薄膜置於無鉛波洛斯凱特(鈣鈦礦)太陽能電池元件中電洞傳輸層,探討改質碳管加入電洞傳輸層對有機-無機太陽能電池元件之影響。


    In this study, we used microwave-assisted rapid synthesis of single wall carbon nanotubes covalently conjugated with sulfonated polyaniline for enhancing stable dispersion. The reaction time could be shortened into 20 minutes by microwave. We used EA, FTIR, Raman, which spectra is able to explain the bonding and quality of modified SWCNTs. The stable SWCNTs-based aqueous dispersions could be used to fabricate conductive thin films by spray-coating. The obtained modified SWCNTs thin film were characterized by SEM and AFM, the result showed that spray-coating enhance not only the morphology but also electrical and optical properties. In order to increase the conductivity of SWCNTs thin film, we used microwave-assisted oxidative chemical polymerization process in 20 minutes to obtain poly(3,4-ethylene dioxy-thiophene) doped with SWCNTs containing covalent poly(anilinesulfonic acid) functionalization. The results showed that transparent SWCNTs thin film with ~89% transmittance and ~108 S/cm conductivity.
    We fabricated organic photovoltaic devices with PEDOT:PASA-AZCNT networks sandwiched between ITO and PEDOT:PSS as hole transport layer. We found that short-circuit current increases for all the thickness, but there is a decrease in open-circuit voltage and fill-factor. The result can be attributed to increase hole transport efficiency of the hybrid composite anode by penetration of SWCNTs into PEDOT:PSS polymer layer.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 奈米碳管簡介及應用 2 1-3 太陽能電池簡介 3 1-4 有機太陽能電池簡介 5 1-5 研究動機與目的 9 第二章 文獻回顧 11 2-1 奈米碳管的結構 11 2-2 奈米碳管的合成 14 2-3 奈米碳管的電學性質 14 2-4 奈米碳管的表面改質 15 2-4-1 化學共價改質法 17 2-4-2 化學非共價改質法 17 2-5 有機太陽能電池工作機制及理論 18 2-6 太陽能電池元件數據量測 20 2-6-1 開路電壓 (open circuit voltage, Voc) 21 2-6-2 短路電流 (short circuit current, Isc or Jsc) 21 2-6-3 填充因子 (fill factor, FF) 21 2-6-4 能量轉換效率 (power conversion efficient, η) 22 2-7 無鉛波洛斯凱特(鈣鈦礦)太陽能電池 22 2-8 奈米碳管應用於有機太陽能電池 27 第三章 儀器設備與操作原理 29 3-1 元素分析儀 29 3-2 熱重分析儀 30 3-3 掃描式電子顯微鏡分析 31 3-4 共軛聚焦顯微拉曼光譜儀 32 3-5 四點探針量測儀 33 3-6 光譜儀器設備 34 3-6-1 紫外光-可見光-近紅外光光譜儀 36 3-6-2 傅立葉轉換紅外光光譜儀 37 3-7 原子力顯微鏡 38 3-8 太陽光譜模擬量測系統 40 第四章 實驗方法與步驟 41 4-1 實驗藥品 41 4-2 實驗方法 41 4-2-1 PEDOT:PASA共價改質奈米碳管之實驗方法 41 4-2-2 改質奈米碳管薄膜製備 43 4-2-3 有機太陽能電池製備 44 第五章 結果與討論 46 5-1 奈米碳管共價改質 46 5-1-1 奈米碳管共價改質分散液情形 46 5-1-2 奈米碳管共價改質拉曼圖譜分析 47 5-1-3 奈米碳管共價改質紅外光光譜分析 49 5-1-4 奈米碳管共價改質熱重性質分析 50 5-1-5 奈米碳管共價改質元素分析 51 5-1-6 奈米碳管共價改質薄膜表面分析 53 5-1-7 奈米碳管共價改質薄膜電性分析 56 5-2有機太陽能電池元件特性 58 5-2-1 有機太陽能電池薄膜形貌分析 58 5-2-2 有機太陽能電池電洞傳輸效率 61 5-2-3 有機太陽能電池元件電阻分析 63 5-2-4 有機太陽能電池元件分析 64 5-3 無鉛鈣鈦礦太陽能電池元件分析 67 第六章 結論 70 第七章 參考文獻 72

    [1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [2] A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, “Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles.,” Nature, vol. 423, no. 6941, pp. 703-703, 2003.
    [3] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W. J. Blau, “Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films,” Journal of Applied Physics, vol. 92, no. 7, pp. 4024-4030, 2002.
    [4] J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, “Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites,” Polymer, vol. 44, no. 19, pp. 5893-5899, 2003.
    [5] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, “Carbon nanotube composites for thermal management,” Applied Physics Letters, vol. 80, no. 15, pp. 2767-2769, 2002.
    [6] C. Y. Wei, D. Srivastava, and K. J. Cho, “Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites,” Nano Letters, vol. 2, no. 6, pp. 647-650, 2002.
    [7] C. L. Cheung, J. H. Hafner, and C. M. Lieber, “Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 3809-3813, 2000.
    [8] C. H. Poa, S. R. P. Silva, P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, “Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix,” Applied Physics Letters, vol. 80, no. 17, pp. 3189-3191, 2002.
    [9] C. Y. Su, A. Y. Lu, Y. L. Chen, C. Y. Wei, P. C. Wang, and C. H. Tsai, “Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells,” Journal of Materials Chemistry, vol. 20, no. 33, pp. 7034-7042, 2010.
    [10] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, vol. 280, no. 5370, pp. 1744-1746, 1998.
    [11] M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing,” Carbon, vol. 43, no. 7, pp. 1499-1505, 2005.
    [12] B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, “Single-wall carbon nanotube-polymer solar cells,” Progress in Photovoltaics, vol. 13, no. 2, pp. 165-172, 2005.
    [13] D. Kearns, and M. Calvin, “Photovoltaic effect and photoconductivity in laminated organic systems,” The Journal of chemical physics, vol. 29, no. 4, pp. 950-951, 1958.
    [14] 黃建榮, “有機太陽能電池技術發展,” 光聯雙月刊, vol. 111, pp. 55-60, 2014.
    [15] C. W. Tang, “Two‐layer organic photovoltaic cell,” Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986.
    [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, pp. 1474-1476, 1992.
    [17] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, no. 5243, pp. 1789, 1995.
    [18] P. C. Wang, E. C. Venancio, D. M. Sarno, and A. G. MacDiarmid, “Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media,” Reactive & Functional Polymers, vol. 69, no. 4, pp. 217-223, 2009.
    [19] P. C. Wang, L. H. Liu, D. A. Mengistie, K. H. Li, B. J. Wen, T. S. Liu, and C. W. Chu, “Transparent electrodes based on conducting polymers for display applications,” Displays, vol. 34, no. 4, pp. 301-314, 2013.
    [20] N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nanofibers,” Journal of Materials Research, vol. 8, no. 12, pp. 3233-3250, 1993.
    [21] C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, and B. L. Zhou, “Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method,” Carbon, vol. 37, no. 11, pp. 1865-1868, 1999.
    [22] M. Ishigami, J. Cumings, A. Zettl, and S. Chen, “A simple method for the continuous production of carbon nanotubes,” Chemical Physics Letters, vol. 319, no. 5-6, pp. 457-459, 2000.
    [23] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization,” Chemical Physics Letters, vol. 243, no. 1-2, pp. 49-54, 1995.
    [24] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, “Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal,” Chemical Physics Letters, vol. 278, no. 1-3, pp. 102-106, 1997.
    [25] P. R. Birkett, A. J. Cheetham, B. R. Eggen, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter,” Chemical Physics Letters, vol. 281, no. 1-3, pp. 111-114, 1997.
    [26] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Applied Physics Letters, vol. 72, no. 25, pp. 3282-3284, 1998.
    [27] C. T. White, and T. N. Todorov, “Carbon nanotubes as long ballistic conductors,” Nature, vol. 393, no. 6682, pp. 240-242, 1998.
    [28] Z. H. Zhang, J. C. Peng, and H. Zhang, “Low-temperature resistance of individual single-walled carbon nanotubes: A theoretical estimation,” Applied Physics Letters, vol. 79, no. 21, pp. 3515-3517, 2001.
    [29] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature, vol. 397, no. 6720, pp. 598-601, 1999.
    [30] H. J. Dai, “Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes (vol 272, pg 523, 1996),” Science, vol. 272, no. 5270, pp. 1861-1861, 1996.
    [31] L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. VanHaesendonck, and Y. Bruynseraede, “Quantum transport in a multiwalled carbon nanotube,” Physical Review Letters, vol. 76, no. 3, pp. 479-482, 1996.
    [32] C. C. Teng, C. C. M. Ma, Y. W. Huang, S. M. Yuen, C. C. Weng, G. H. Chen, and S. F. Su, “Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites,” Composites Part a-Applied Science and Manufacturing, vol. 39, no. 12, pp. 1869-1875, 2008.
    [33] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, “Effect of acid treatment on carbon nanotube-based flexible transparent conducting films,” Journal of the American Chemical Society, vol. 129, no. 25, pp. 7758-+, 2007.
    [34] H. Tantang, J. Y. Ong, C. L. Loh, X. C. Dong, P. Chen, Y. Chen, X. Hu, L. P. Tan, and L. J. Li, “Using oxidation to increase the electrical conductivity of carbon nanotube electrodes,” Carbon, vol. 47, no. 7, pp. 1867-1870, 2009.
    [35] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [36] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
    [37] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016.
    [38] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
    [39] Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, “Pseudohalide‐Induced Moisture Tolerance in Perovskite CH3NH3Pb (SCN) 2I Thin Films,” Angewandte Chemie, vol. 127, no. 26, pp. 7727-7730, 2015.
    [40] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, and D. Credgington, “Bright light-emitting diodes based on organometal halide perovskite,” Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
    [41] Q. Jiang, M. Chen, J. Li, M. Wang, X. Zeng, T. Besara, J. Lu, Y. Xin, X. Shan, and B. Pan, “Electrochemical Doping of Halide Perovskites with Ion Intercalation,” ACS nano, vol. 11, no. 1, pp. 1073-1079, 2017.
    [42] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nature materials, vol. 14, no. 6, pp. 636, 2015.
    [43] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nature communications, vol. 6, pp. 7383, 2015.
    [44] Y. Mei, C. Zhang, Z. Vardeny, and O. Jurchescu, “Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature,” MRS Communications, vol. 5, no. 2, pp. 297-301, 2015.
    [45] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nature communications, vol. 6, pp. 8056, 2015.
    [46] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells,” Nature Photonics, vol. 8, no. 6, pp. 489, 2014.
    [47] F. Zuo, S. T. Williams, P. W. Liang, C. C. Chueh, C. Y. Liao, and A. K. Y. Jen, “Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 26, no. 37, pp. 6454-6460, 2014.
    [48] L. Serrano‐Lujan, N. Espinosa, T. T. Larsen‐Olsen, J. Abad, A. Urbina, and F. C. Krebs, “Tin‐and Lead‐Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective,” Advanced Energy Materials, vol. 5, no. 20, 2015.
    [49] T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, and N. Mathews, “Lead-free germanium iodide perovskite materials for photovoltaic applications,” Journal of Materials Chemistry A, vol. 3, no. 47, pp. 23829-23832, 2015.
    [50] D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, and C. Soci, “Lead-free MA2CuCl x Br4–x hybrid perovskites,” Inorganic chemistry, vol. 55, no. 3, pp. 1044-1052, 2016.
    [51] J.-C. Hebig, I. Kühn, J. Flohre, and T. Kirchartz, “Optoelectronic properties of (CH3NH3) 3Sb2I9 thin films for photovoltaic applications,” ACS Energy Letters, vol. 1, no. 1, pp. 309-314, 2016.
    [52] Y. C. Choi, Y. H. Lee, S. H. Im, J. H. Noh, T. N. Mandal, W. S. Yang, and S. I. Seok, “Efficient Inorganic‐Organic Heterojunction Solar Cells Employing Sb2 (Sx/Se1‐x) 3 Graded‐Composition Sensitizers,” Advanced Energy Materials, vol. 4, no. 7, 2014.
    [53] B. W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. Johansson, “Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application,” Advanced Materials, vol. 27, no. 43, pp. 6806-6813, 2015.
    [54] K. M. Boopathi, S. Raman, R. Mohanraman, F.-C. Chou, Y.-Y. Chen, C.-H. Lee, F.-C. Chang, and C.-W. Chu, “Solution-processable bismuth iodide nanosheets as hole transport layers for organic solar cells,” Solar Energy Materials and Solar Cells, vol. 121, pp. 35-41, 2014.
    [55] K. M. Boopathi, P. Karuppuswamy, A. Singh, C. Hanmandlu, L. Lin, S. A. Abbas, C. C. Chang, P. C. Wang, G. Li, and C. W. Chu, “Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites,” Journal of Materials Chemistry A, vol. 5, no. 39, pp. 20843-20850, 2017.
    [56] C. Zuo, and L. Ding, “Lead‐free Perovskite Materials (NH4) 3Sb2IxBr9− x,” Angewandte Chemie, vol. 129, no. 23, pp. 6628-6632, 2017.
    [57] A. J. Lehner, D. H. Fabini, H. A. Evans, C.-A. Hébert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, and R. Seshadri, “Crystal and Electronic Structures of Complex Bismuth Iodides A 3Bi2I9 (A= K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics,” Chemistry of Materials, vol. 27, no. 20, pp. 7137-7148, 2015.
    [58] B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan, and D. B. Mitzi, “Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor,” Chemistry of Materials, vol. 27, no. 16, pp. 5622-5632, 2015.
    [59] F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, and H. Han, “Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells,” Journal of the American Chemical Society, vol. 140, no. 3, pp. 1019-1027, 2018.
    [60] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, “Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells,” Applied physics letters, vol. 87, no. 20, pp. 203511, 2005.
    [61] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Applied Physics Letters, vol. 88, no. 23, pp. 233506, 2006.
    [62] J. Van De Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In 2 O 3: Sn as the transparent electrode,” Applied Physics Letters, vol. 88, no. 23, pp. 233503, 2006.
    [63] E. Kymakis, and G. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Applied Physics Letters, vol. 80, no. 1, pp. 112-114, 2002.
    [64] A. F. Nogueira, B. S. Lomba, M. A. Soto-Oviedo, C. R. D. Correia, P. Corio, C. A. Furtado, and I. A. Hümmelgen, “Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups,” The Journal of Physical Chemistry C, vol. 111, no. 49, pp. 18431-18438, 2007.
    [65] R. L. Patyk, B. S. Lomba, A. F. Nogueira, C. A. Furtado, A. P. Santos, R. M. Mello, L. Micaroni, and I. A. Hümmelgen, “Carbon nanotube–polybithiophene photovoltaic devices with high open‐circuit voltage,” physica status solidi (RRL)-Rapid Research Letters, vol. 1, no. 1, 2007.
    [66] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells,” Nano letters, vol. 14, no. 10, pp. 5561-5568, 2014.
    [67] D. R. Ulrich, “Multifunctional Macromolecular Ultrastructures - Introductory Comments Speciality Polymers 86,” Polymer, vol. 28, pp. 533-542, 1987.
    [68] S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, “Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT: PSS films for polymeric anodes of polymer solar cells,” Journal of Materials Chemistry, vol. 19, no. 47, pp. 9045-9053, 2009.
    [69] B. Peng, X. Guo, C. Cui, Y. Zou, C. Pan, and Y. Li, “Performance improvement of polymer solar cells by using a solvent-treated poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) buffer layer,” Applied Physics Letters, vol. 98, no. 24, pp. 113, 2011.
    [70] S. Rutledge, and A. Helmy, “Carrier mobility enhancement in poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) having undergone rapid thermal annealing,” Journal of Applied Physics, vol. 114, no. 13, pp. 133708, 2013.
    [71] D. Shi, X. Qin, Y. Li, Y. He, C. Zhong, J. Pan, H. Dong, W. Xu, T. Li, and W. Hu, “Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering,” Science advances, vol. 2, no. 4, pp. e1501491, 2016.
    [72] G. Namkoong, P. Boland, K. Lee, and J. Dean, “Design of organic tandem solar cells using PCPDTBT: PC 61 BM and P 3 HT: PC 71 BM,” Journal of Applied Physics, vol. 107, no. 12, pp. 124515, 2010.
    [73] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature photonics, vol. 7, no. 6, pp. 486, 2013.
    [74] H.-Z. Yu, and J.-B. Peng, “The Influence of the Solvent and the Device Structure on Performance of the MEH-PPV: PCBM Solar Cell,” Acta Physico-Chimica Sinca, vol. 23, no. 10, pp. 1637-1641, 2007.
    [75] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 8, pp. 659-676, 2007.

    QR CODE