研究生: |
李佶珉 Li, Ji-Min |
---|---|
論文名稱: |
利用分泌蛋白質體學技術分析口腔鱗狀上皮細胞癌轉移之治療標的 Secretomic Analysis of Therapeutic Targets in Cancer Metastasis of Oral Squamous Cell Carcinoma |
指導教授: |
詹鴻霖
Chan, Hong-Lin |
口試委員: |
周秀專
Chou, Hsiu-Chuan 王慧菁 Wang, Hui-Ching 李岳倫 Lee, Yueh-Luen 陳雅雯 Chen, Ya-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 半乳糖凝集素-1 、轉移 、口腔癌 、p38 MAPK 激酶 、分泌蛋白質體學 |
外文關鍵詞: | LGALS1, metastasis, oral cancer, p38 MAPK, secretomics |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔鱗狀上皮細胞癌屬於頭頸癌中最普遍且惡性的腫瘤之一,在台灣則好發於男性。癌症轉移是一個漸進的過程,癌細胞會從原位轉移到遠端,然而癌症的轉移也代表著不好的預後和高死亡率。有許多台灣病患被診斷出口腔癌時都已經是晚期了,這意味著口腔癌早已發生轉移。因此,我們主要是想從口腔癌中找出具有轉移專一的生物標誌分子,並且對於標的蛋白在口腔癌轉移的角色,提供全面的功能性了解。分泌蛋白的不正常分泌表現,可能對於癌症轉移是一個病理上的指標。有越來越多的分泌蛋白被報導,透過與腫瘤微環境的調控參與癌症的轉移,且那些分泌蛋白對於預防癌症轉移被認為是潛在的標的。在差異性二微電泳(2D-DIGE)和基質輔助雷射脫附游離飛行時間式質譜儀(MALDI-TOF MS)的配合之下,分泌蛋白質體學的分析提供一個平台來找到有潛力的標的。我們鑑定出一群差異性表現的分泌蛋白,這些分泌蛋白的差異性表現調控著口腔癌的轉移。在這些潛力蛋白之中,半乳糖凝集素-1(LGALS1)被發現在具有高度侵略性口腔癌細胞中大量表現。我們利用核糖核酸干擾的技術來探討半乳糖凝集素-1在口腔癌轉移中的作用與角色。從我們的實驗結果中顯示,減弱半乳糖凝集素-1的表現會顯著的降低口腔癌細胞的增生並誘導細胞停留在去氧核醣核酸的合成期。另外,減弱半乳糖凝集素-1的表現也會抑制口腔癌細胞的移動和入侵能力。我們在高度侵略性口腔癌細胞中發現,p38 MAPK激酶調控的基質金屬蛋白酶-9的訊息傳遞路徑有活化的現象跟細胞呈現間質的表現型,然而減弱半乳糖凝集素-1的表現會降低p38 MAPK激酶的磷酸化、減少基質金屬蛋白酶-9的表現、減低調控上皮細胞間質轉化的轉錄因子的表現。總而言之,我們認為半乳糖凝集素-1的確参與調控口腔癌細胞的轉移特性。我們的研究成果也指出高表現的半乳糖凝集素-1和口腔癌的發展及轉移有著很大的關係,因此,半乳糖凝集素-1可望成為診斷口腔癌預後具有潛力的生物標誌分子及治療口腔癌的新穎標的。
Oral squamous cell carcinoma (OSCC), one of the most prevalent malignant tumors among head and neck cancers, predominantly takes place in males in Taiwan. Metastasis is a progressive process that promotes the dissemination of cancer cells from the primary tumor to distant sites and responsible for poor prognosis and high mortality. In Taiwan, most patients were diagnosed with oral cancer in advanced stage, which means metastatic oral cancer is occurred. Here, we aimed to evaluate metastasis-specific markers in oral cancer and to provide comprehensive recognition concerning functional roles of the specific target in oral cancer metastasis. An irregulated expression of secreted proteins might be an indicator for pathological index of cancer metastasis. More and more secreted proteins have been reported to be involved in cancer metastasis through modulation of the tumor microenvironment, and those secreted proteins also suggest to be the potential targets for preventing cancer metastasis. Secretomic analysis based on two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) provides a platform for potential target discovery. A group of differentially expressed proteins were identified and showed their biological characteristics in mediating oral cancer metastasis. Among the potential proteins, lectin, galactoside-binding, soluble, 1 (LGALS1) was observed to be upregulated in highly invasive oral cancer cells. RNA interference technique was performed to investigate the role of LGALS1 in oral cancer metastasis. Our data showed that knockdown of LGALS1 significantly reduced cell proliferation and induced S phase arrest. Silencing LGALS1 resulted in the inhibition of oral cell migration and invasion. Activation of the p38 MAPK-mediated MMP-9 pathway and mesenchymal phenotypes of EMT were observed in highly invasive oral cancer cells, whereas downregulated LGALS1 decreased the phosphorylation of p38 MAPK, MMP-9 expression, and the expression of EMT-regulating transcription factors. Collectively, we propose that secreted LGALS1 is involved in the metastatic potential of oral cancer cells. These findings demonstrate that elevated LGALS1 is strongly correlated with oral cancer progression and metastasis, and that it could potentially serve as a prognostic biomarker and an innovative target for oral cancer therapy.
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin 65, 87-108 (2015).
2. Chang TS, et al. Impact of young age on the prognosis for oral cancer: a population-based study in Taiwan. PLoS One 8, e75855 (2013).
3. de Vries N, Van der Waal I, Snow GB. Multiple primary tumours in oral cancer. Int J Oral Maxillofac Surg 15, 85-87 (1986).
4. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 45, 301-308 (2009).
5. Kao SY, Lim E. An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res 18, 7-12 (2015).
6. Patel SG, Shah JP. TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 55, 242-258; quiz 261-242, 264 (2005).
7. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin 65, 401-421 (2015).
8. Omura K. Current status of oral cancer treatment strategies: surgical treatments for oral squamous cell carcinoma. Int J Clin Oncol 19, 423-430 (2014).
9. Ord RA, Blanchaert RH, Jr. Current management of oral cancer. A multidisciplinary approach. J Am Dent Assoc 132 Suppl, 19S-23S (2001).
10. Mehra R, Cohen RB, Burtness BA. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol 6, 742-750 (2008).
11. Gupta P, Sivasankari P. Specific role of targeted molecular therapy in treatment of oral squamous cell carcinoma. Oncobiology and Targets 4, 1-8 (2017).
12. Goerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer--an update of recent developments. Head & neck oncology 2, 8 (2010).
13. Fidler IJ. Timeline - The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3, 453-458 (2003).
14. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 331, 1559-1564 (2011).
15. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100, 57-70 (2000).
16. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274-284 (2009).
17. Yang J, Weinberg RA. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell 14, 818-829 (2008).
18. Wenzel S, Sagowski C, Kehrl W, Metternich FU. The prognostic impact of metastatic pattern of lymph nodes in patients with oral and oropharyngeal squamous cell carcinomas. Eur Arch Oto-Rhino-L 261, 270-275 (2004).
19. Noguti J, et al. Metastasis from Oral Cancer: An Overview. Cancer Genom Proteom 9, 329-335 (2012).
20. Huang CC, Ou CY, Lee WT, Hsiao JR, Tsai ST, Wang JD. Life expectancy and expected years of life lost to oral cancer in Taiwan: A nation-wide analysis of 22,024 cases followed for 10 years. Oral Oncol 51, 349-354 (2015).
21. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg 61, 751-758 (2003).
22. Pavlou MP, Diamandis EP. The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73, 1896-1906 (2010).
23. Xue H, Lu B, Lai M. The cancer secretome: a reservoir of biomarkers. J Transl Med 6, 52 (2008).
24. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64, 515-547 (2000).
25. Viswanathan S, Unlu M, Minden JS. Two-dimensional difference gel electrophoresis. Nat Protoc 1, 1351-1358 (2006).
26. Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3, 220-239 (2004).
27. Timms JF, Cramer R. Difference gel electrophoresis. Proteomics 8, 4886-4897 (2008).
28. Chang YH, Lee SH, Liao IC, Huang SH, Cheng HC, Liao PC. Secretomic Analysis Identifies Alpha-1 Antitrypsin (A1AT) as a Required Protein in Cancer Cell Migration, Invasion, and Pericellular Fibronectin Assembly for Facilitating Lung Colonization of Lung Adenocarcinoma Cells. Mol Cell Proteomics 11, 1320-1339 (2012).
29. Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med 33, 79-86 (2004).
30. Lu YC, et al. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila) 5, 665-674 (2012).
31. Huang WC, et al. miRNA-491-5p and GIT1 Serve as Modulators and Biomarkers for Oral Squamous Cell Carcinoma Invasion and Metastasis. Cancer Research 74, 751-764 (2014).
32. Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology 16, 137R-157R (2006).
33. Ito K, et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metast Rev 31, 763-778 (2012).
34. Danguy A, Camby I, Kiss R. Galectins and cancer. Bba-Gen Subjects 1572, 285-293 (2002).
35. Mira E, et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117, 1847-1856 (2004).
36. Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemoth Pharm 43, S42-S51 (1999).
37. Liang KC, et al. Interleukin-1 beta induces MMP-9 expression via p42/44 MAPK, p38 MAPK, JNK, and nuclear factor-kappa B signaling pathways in human tracheal smooth muscle cells. J Cell Physiol 211, 759-770 (2007).
38. Hong J, et al. Phosphorylation of Serine 68 of Twist1 by MAPKs Stabilizes Twist1 Protein and Promotes Breast Cancer Cell Invasiveness. Cancer Research 71, 3980-3990 (2011).
39. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer Metastasis Is Accelerated through Immunosuppression during Snail-induced EMT of Cancer Cells. Cancer Cell 15, 195-206 (2009).
40. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Bio 15, 178-196 (2014).
41. Chen YK, Huang HC, Lin LM, Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol 35, 173-179 (1999).
42. Okada Y, Mataga I, Katagiri M, Ishii K. An analysis of cervical lymph nodes metastasis in oral squamous cell carcinoma - Relationship between grade of histopathological malignancy and lymph nodes metastasis. Int J Oral Max Surg 32, 284-288 (2003).
43. Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med 14, 47-62 (2003).
44. Tsuda M, Ohba Y. Functional Biomarkers of Oral Cancer. Oral Cancer, Dr Kalu U E Ogbureke (Ed), 277-294 (2012).
45. Laimer K, et al. High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: A TMA-based immunohistochemical analysis. Oral Oncol 43, 193-198 (2007).
46. Lim J, et al. Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol 58, 1199-1205 (2005).
47. Harada H, Omura K, Nakajima Y, Hasegawa S, Mogi S. Cyclin B1 is useful to predict occult cervical lymph node metastases in tongue carcinoma. J Exp Clin Canc Res 25, 351-356 (2006).
48. Ogden GR, Cowpe JG, Green M. Cytobrush and Wooden Spatula for Oral Exfoliative Cytology - a Comparison. Acta Cytol 36, 706-710 (1992).
49. Ogden GR, Leigh I, Chisholm DMK, Cowpe JG, Lane EB. Exfoliative cytology of normal oral mucosa - Assessing the basal cell keratin phenotype. Acta Cytol 40, 933-936 (1996).
50. Lippert BM, Knauer SK, Fetz V, Mann W, Stauber RH. Dynamic survivin in head and neck cancer: Molecular mechanism and therapeutic potential. International Journal of Cancer 121, 1169-1174 (2007).
51. Lo Muzio L, et al. Survivin as prognostic factor in squamous cell carcinoma of the oral cavity. Cancer Letters 225, 27-33 (2005).
52. Jonathan RA, et al. The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiotherapy and Oncology 79, 288-297 (2006).
53. Kademani D, Lewis JT, Lamb DH, Rallis DJ, Harrington JR. Angiogenesis and CD34 Expression as a Predictor of Recurrence in Oral Squamous Cell Carcinoma. J Oral Maxil Surg 67, 1800-1805 (2009).
54. de Vicente JC, Fresno MF, Villalain L, Vega JA, Vallelo GH. Expression and clinical significance of matrix metal toproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 41, 283-293 (2005).
55. Luukkaa M, et al. Association between high collagenase-3 expression levels and poor prognosis in patients with head and neck cancer. Head Neck-J Sci Spec 28, 225-234 (2006).
56. Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg 36, 671-679 (2007).
57. Gupta P. Role of salivary biomarkers for early detection of oral squamous cell carcinoma. Int J Adv Integ Med Sci 2, 155-160 (2017).
58. Mizukawa N, et al. Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Research 18, 4645-4649 (1998).
59. Franzmann EJ, et al. Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidem Biomar 16, 1348-1355 (2007).
60. Rajkumar K, et al. Estimation of serological and salivary biomarkers in patients vith oral squamous cell carcinoma, premalignant lesions and conditions. SRM Univ J Dent Sci 1, 14-19 (2010).
61. Krimmel M, Hoffmann J, Krimmel C, Cornelius CP, Schwenzer N. Relevance of SCC-Ag, CEA, CA 19.9 and CA 125 for diagnosis and follow-up in oral cancer. J Cranio Maxill Surg 26, 243-248 (1998).
62. Li Y, Zhou X, St John MA, Wong DT. RNA profiling of cell-free saliva using microarray technology. J Dent Res 83, 199-203 (2004).
63. Nagler RM, Barak M, Peled M, Ben-Aryeh H, Filatov M, Laufer D. Early diagnosis and treatment monitoring roles of tumor markers Cyfra 21-1 and TPS in oral squamous cell carcinoma. Cancer 85, 1018-1025 (1999).
64. Bonne NJ, Wong DT. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Med 4, 82 (2012).
65. Bahar G, Feinmesser R, Shpitzer T, Popovtzer A, Nagler RM. Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile. Cancer 109, 54-59 (2007).
66. Stott-Miller M, et al. Tumor and Salivary Matrix Metalloproteinase Levels Are Strong Diagnostic Markers of Oral Squamous Cell Carcinoma. Cancer Epidem Biomar 20, 2628-2636 (2011).
67. Vairaktaris E, et al. A metalloproteinase-9 polymorphism which affects its expression is associated with increased risk for oral squamous cell carcinoma. Ejso-Eur J Surg Onc 34, 450-455 (2008).
68. Nagakubo D, et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Bioph Res Co 231, 509-513 (1997).
69. Hod Y. Differential control of apoptosis by DJ-1 in prostate benign and cancer cells. J Cell Biochem 92, 1221-1233 (2004).
70. Liu H, et al. Expression and role of DJ-1 in leukemia. Biochem Biophys Res Commun 375, 477-483 (2008).
71. Le Naour F, et al. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clinical Cancer Research 7, 3328-3335 (2001).
72. Arnouk H, et al. Characterization of molecular markers indicative of cervical cancer progression. Proteom Clin Appl 3, 516-527 (2009).
73. Tian M, et al. Proteomic analysis identifies MMP-9, DJ-1 and AIBG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. Bmc Cancer 8, (2008).
74. Ismail IA, Kang HS, Lee HJ, Kim JK, Hong SH. DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression. Br J Cancer 110, 1298-1306 (2014).
75. He X, et al. DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 33, 555-562 (2012).
76. Zhu ZM, et al. DJ-1 is involved in the peritoneal metastasis of gastric cancer through activation of the Akt signaling pathway. Oncol Rep 31, 1489-1497 (2014).
77. Koblinski JE, et al. Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Res 65, 7370-7377 (2005).
78. Guweidhi A, et al. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann Surg 242, 224-234 (2005).
79. Chen J, Shi D, Liu X, Fang S, Zhang J, Zhao Y. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis. BMC Cancer 12, 464 (2012).
80. Hung JY, et al. Secreted protein acidic and rich in cysteine (SPARC) induces cell migration and epithelial mesenchymal transition through WNK1/snail in non-small cell lung cancer. Oncotarget 8, 63691-63702 (2017).
81. Chang CH, et al. Secreted Protein Acidic and Rich in Cysteine (SPARC) Enhances Cell Proliferation, Migration, and Epithelial Mesenchymal Transition, and SPARC Expression is Associated with Tumor Grade in Head and Neck Cancer. Int J Mol Sci 18, (2017).
82. Zhang J, et al. SPARC expression is negatively correlated with clinicopathological factors of gastric cancer and inhibits malignancy of gastric cancer cells. Oncol Rep 31, 2312-2320 (2014).
83. Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 123, 751-766 (2013).
84. Tai IT, Dai M, Owen DA, Chen LB. Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. Journal of Clinical Investigation 115, 1492-1502 (2005).
85. Said N, Theodorescu D. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Cancer. J Carcinogene Mutagene, 151 (2013).
86. Arcolia V, et al. Galectin-1 is a diagnostic marker involved in thyroid cancer progression. International Journal of Oncology 51, 760-770 (2017).
87. Jung EJ, et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. International Journal of Cancer 120, 2331-2338 (2007).
88. Kim HJ, et al. Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Human Pathology 44, 62-68 (2013).
89. Sanjuan X, et al. Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology 113, 1906-1915 (1997).
90. Chong Y, et al. Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. Oncotarget 7, 83611-83626 (2016).
91. Xue XF, et al. Galectin-1 Secreted by Activated Stellate Cells in Pancreatic Ductal Adenocarcinoma Stroma Promotes Proliferation and Invasion of Pancreatic Cancer Cells An In Vitro Study on the Microenvironment of Pancreatic Ductal Adenocarcinoma. Pancreas 40, 832-839 (2011).
92. Kim HJ, et al. High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion. Eur J Cancer 48, 1914-1921 (2012).
93. Astorgues-Xerri L, et al. OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J Cancer 50, 2463-2477 (2014).
94. Xue JY, Zhou GX, Chen T, Gao S, Choi MY, Wong YS. Desacetyluvaricin induces S phase arrest in SW480 colorectal cancer cells through superoxide overproduction. J Cell Biochem 115, 464-475 (2014).
95. Della Ragione F, et al. Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Bioph Res Co 250, 53-58 (1998).
96. Yuan Z, et al. PNAS-4, an Early DNA Damage Response Gene, Induces S Phase Arrest and Apoptosis by Activating Checkpoint Kinases in Lung Cancer Cells. J Biol Chem 290, 14927-14944 (2015).
97. Zheng Q, et al. Anticancer effect of icaritin on human lung cancer cells through inducing S phase cell cycle arrest and apoptosis. J Huazhong Univ Sci Technolog Med Sci 34, 497-503 (2014).
98. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F. Introduction to galectins. Glycoconj J 19, 433-440 (2002).
99. Nickel W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607-614 (2005).
100. Principe M, et al. Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis. J Hematol Oncol 10, 16 (2017).
101. Leblanc R, et al. Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood 124, 3141-3150 (2014).
102. Navab R, et al. Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35, 1899-1908 (2016).
103. Sottnik JL, et al. Integrin alpha2beta 1 (alpha2beta1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 30, 569-578 (2013).
104. Nam K, et al. Binding of galectin-1 to integrin beta 1 potentiates drug resistance by promoting survivin expression in breast cancer cells. Oncotarget 8, 35804-35823 (2017).
105. Hsu YL, Wu CY, Hung JY, Lin YS, Huang MS, Kuo PL. Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin alpha 6 beta 4 and Notch1/Jagged2 signaling pathway. Carcinogenesis 34, 1370-1381 (2013).
106. Cuenda A, Rousseau S. P38 MAP-Kinases pathway regulation, function and role in human diseases. Bba-Mol Cell Res 1773, 1358-1375 (2007).
107. Zhang C, et al. Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway. J Cancer 8, 2511-2522 (2017).
108. Huang RH, et al. Osteopontin Promotes Cell Migration and Invasion, and Inhibits Apoptosis and Autophagy in Colorectal Cancer by activating the p38 MAPK Signaling Pathway. Cell Physiol Biochem 41, 1851-1864 (2017).
109. Kim ES, Kim MS, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. International Journal of Oncology 25, 1375-1382 (2004).
110. Yu YC, et al. SDF-1/CXCR7 Axis Enhances Ovarian Cancer Cell Invasion by MMP-9 Expression Through p38 MAPK Pathway. DNA Cell Biol 33, 543-549 (2014).
111. Odagiri H, et al. The Secreted Protein ANGPTL2 Promotes Metastasis of Osteosarcoma Cells Through Integrin alpha 5 beta 1, p38 MAPK, and Matrix Metalloproteinases. Science Signaling 7, (2014).
112. del Barco Barrantes I, Nebreda AR. Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans 40, 79-84 (2012).
113. Hong J, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 71, 3980-3990 (2011).
114. Hipp S, et al. Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Arch 457, 705-713 (2010).