研究生: |
張婷崴 Chang, Ting-Wei |
---|---|
論文名稱: |
合成八號位置修飾的唾液酸衍生物及神經節苷脂 LLG-5 Synthesis of C-8 Modified Sialosides and toward Synthesis of Ganglioside LLG-5 |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
陳清玉
Chen, Ching-Yuh 蒙國光 Kwok Kong Tony Mong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 239 |
中文關鍵詞: | 唾液酸 、神經節苷脂 LLG-5 、八號位置修飾唾液酸 、甲基化 、硫酸化 |
外文關鍵詞: | sialic acid, ganglioside LLG-5, C-8 modified sialosides, methylation, sulfation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經節苷脂在生物體中扮演許多的角色,如細胞辨識、細胞-細胞間的交互作用、細胞分化及細胞的訊息傳遞等。而從棘皮動物中分離出的新型神經節苷脂,在神經生長因子的輔助下,則可刺激大鼠 PC-12 細胞,增加神經再生的活性,為治療帕金森氏症等神經系統疾病的潛力藥物,文獻報導中指出,非還原端之唾液酸在 C-8 修飾有甲基及硫酸根的神經節苷脂其刺激神經再生活性更好。
本論文以有機合成的方法將唾液酸 C-8 修飾為甲基及硫酸根,但在進行 O-甲基化時,面臨唾液酸 C-5 之 N-甲基化之競爭反應,合成策略改為將 NHAc 轉換為疊氮基(N3)進行唾液酸 C-8 甲基化反應後,再還原疊氮基為胺基來進行醯胺鍵生成反應,完成唾液酸 C-8 甲基化且 C-5 分別修飾為 NHAc 及 NHGc 的唾液酸衍生物。
以市售的唾液酸(Neu5Ac)為起始物,分別經過 17 步及 13 步可合成出 C-8 修飾成甲基的Neu5Ac8Me 和硫酸根的Neu5Ac8SO3-Na+,總產率分別為 12% 及 20%。相同的策略亦運用在合成神經節苷脂 LLG-5 非還原端的雙唾液酸(8-OMeNeuGcα2→11NeuGcα2)片段,另外,亦由(S)-甘油醛縮丙酮 48及 phosphonium salt 46為起始物經由 Wittig 反應,合成 LLG-5 另一核心片段─脂肪醯鏈,以利後續 LLG-5 之全合成研究。
Gangliosides play important roles in essential biological events including cellular recognition, cell-cell interaction, cell differentiation, and cellular transduction. In addition, the slight modification of terminal sialic acid (N-acetylneuraminic acid, Neu5Ac) in the oligosaccharide chain of ganglioside imparts changes in biological activities of the parent gangliosides. The O-methylation and O-sulfation at C-8 position of non-reducing end Neu5Ac are the two most common modification, especially found in ethinodermatous gangliosides (EGs). The C-8 methylated or sulfated EGs displayed a broad spectrum neuritogenic activity on rat pheochromocytoma PC-12 cell in the presence of nerve growth factor. Consequently, EGs are regarded as potential drug to cure nervous system diseases such as Parkinson's disease.
In order to synthesize C-8 modified Neu5Ac derivatives, this thesis has developed a new chemical strategy by changing N3 in place of NHAc at the C-5 position of Neu5Ac to avoid competing N-methylation. The C-8 modified Neu5Ac derivatives, Neu5Ac8Me and Neu5Ac8SO3-Na+, were successfully synthesized by a linear 17-and 13-step sequences, with an overall yields of 12% and 20%, respectively, starting from Neu5Ac. Furthermore, the C-8 modified non-reducing end disialic acid (8-OMeNeuGcα2→11NeuGcα2) of the LLG-5 ganglioside was also prepared by following similar approach. On the other hand, the fatty acyl chain of the ganglioside LLG-5 was synthesized via the Wittig reaction using acetonide-protected (S)-glyceraldehyde 48 and phosphonium salt 46. The assembly moieties of the C-8 modified 8-OMeNeuGcα2→11NeuGcα2 disialic acid and the fatty acyl chain towards the synthesis of LLG-5 is currently underway.
1. Axford, J. Glycobiology and medicine: an introduction. J. R. Soc. Med. 1997, 90, 260-264.
2. (a) Ress, D. K.; Linhardt, R. J. Sialic acid donors: Chemical synthesis and glycosylation. Curr. Org. Chem. 2004, 1, 31-46; (b) Yamada, H.; Harada, T.; Miyazaki, H.; Takahashi, T. One-pot sequential glycosylation: A new method for the synthesis of oligosaccharides. Tetrahedron Lett. 1994, 35, 3979-3982; (c) Sears, P.; Wong, C.-H. Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001, 291, 2344-2350; (d) Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523-1527.
3. Sears, P.; Wong, C. H. Intervention of carbohydrate recognition by proteins and nucleic acids. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12086-12093.
4. (a) Blix, F. G.; Gottschalk, A.; Klenk, E. Proposed nomenclature in the field of neuraminic and sialic acids. Nature 1957, 179, 1088; (b) Heard, D. H. The chemistry and biology of sialic acids and related substances. Immunology 1961, 4, 486.
5. Faillard, H. The early history of sialic acids. Trends Biochem. Sci. 1989, 14, 237-241.
6. Chen, X.; Varki, A. ACS Chem. Biol. Advances in the biology and chemistry of sialic acids. 2010, 5, 163-176.
7. Brinkman-Van der Linden, E. C. M.; Sjoberg, E. R.; Juneja, L. R.; Crocker, P. R.; Varki, N.; Varki, A. Loss of N-glycolylneuraminic acid in human evolution. J. Biol. Chem. 2000, 275, 8633-8640.
8. Yu, H.; Cao, H.; Tiwari, V. K.; Li, Y.; Chen, X. Chemoenzymatic synthesis of C8-modified sialic acids and related α2–3- and α2–6-linked sialosides. Bioorg. Med. Chem. Lett. 2011, 21, 5037-5040.
9. Varki, A. Sialic acids in human health and disease. Trends Mol. Med. 2008, 14, 351-360.
10. Passaniti, A.; Hart, G. W. Cell surface sialylation and tumor metastasis. J. Biol. Chem. 1988, 263, 7591-7603.
11. (a) Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X. Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α-2,6-linked sialosides: A P. damsela α-2,6-sialyltransferase with extremely flexible donor–substrate specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-3944; (b) Chen, X.; Varki, A. Advances in the biology and chemistry of sialic acids. ACS chemical biology 2010, 5, 163-176.
12. Angata, T.; Varki, A. Chemical diversity in the sialic acids and related α-keto acids: An evolutionary perspective. Chem. Rev. 2002, 102, 439-470.
13. Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 1998, 54, 1330-1349.
14. Schauer, R. Achievements and challenges of sialic acid research. Glycoconjugate J. 2000, 17, 485-499.
15. Morley, T. J.; Withers, S. G. Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437.
16. Hemeon, I.; Bennet, A. J. Sialic acid and structural analogues: stereoselective syntheses. Synthesis 2007, 2007, 1899-1926.
17. Liang, C.-F.; Kuan, T.-C.; Chang, T.-C.; Lin, C.-C. Stereoselective synthesis of S-linked α(2→8) and α(2→8)/α(2→9) hexasialic acids. J. Am. Chem. Soc. 2012, 134, 16074-16079.
18. Rich, J. R.; Withers, S. G. A chemoenzymatic total synthesis of the neurogenic starfish ganglioside LLG-3 using an engineered and evolved synthase. Angew. Chem. Int. Ed. 2012, 51, 8640-8643.
19. Tamai, H.; Ando, H.; Tanaka, H. N.; Hosoda-Yabe, R.; Yabe, T.; Ishida, H.; Kiso, M. The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata. Angew. Chem. Int. Ed. 2011, 50, 2330-2333.
20. Sogabe, S.; Ando, H.; Koketsu, M.; Ishihara, H. A novel de-O-chloroacetylation reagent: 1-seleonocarbamoylpiperidine. Tetrahedron Lett. 2006, 47, 6603-6606.
21. Hadjiconstantinou, M.; Neff, N. H. GM1 Ganglioside: In vivo and in vitro trophic actions on central neurotransmitter systems. J. Neurochem. 1998, 70, 1335-1345.
22. (a) Schengrund, C. L. The role(s) of gangliosides in neural differentiation and repair: a perspective. Brain Res. Bull. 1990, 24, 131-141; (b) Manev, H.; Costa, E.; Wroblewski, J. T.; Guidotti, A. Abusive stimulation of excitatory amino acid receptors: a strategy to limit neurotoxicity. FASEB J. 1990, 4, 2789-2797.
23. Tagami, S.; Inokuchi, J.-I.; Kabayama, K.; Yoshimura, H.; Kitamura, F.; Uemura, S.; Ogawa, C.; Ishii, A.; Saito, M.; Ohtsuka, Y.; Sakaue, S.; Igarashi, Y. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002, 277, 3085-3092.
24. Svennerholm, L. Gangliosides - a new therapeutic agent against stroke and Alzheimer's disease. Life Sci. 1994, 55, 2125-2134.
25. Schneider, J. S.; Gollomp, S. M.; Sendek, S.; Colcher, A.; Cambi, F.; Du, W. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J. Neurol. Sci. 2013, 324, 140-148.
26. (a) Schengrund, C. L. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 2015, 40, 397-406; (b) Molander-Melin, M.; Blennow, K.; Bogdanovic, N.; Dellheden, B.; Mansson, J. E.; Fredman, P. Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J. Neurochem. 2005, 92, 171-182.
27. Miyamoto, T.; Inagaki, M.; Isobe, R.; Tanaka, Y.; Higuchi, R.; Iha, M.; Teruya, K. Re-examination of the structure of acanthaganglioside C, and the identification of three minor acanthagangliosides F, G and H. Liebigs Ann. Recl. 1997, 1997, 931-936.
28. Kawano, Y.; Higuchi, R.; Komori, T. Isolation and structure of five new gangliosides. Liebigs Ann. Chem. 1990, 43-50.
29. Inagaki, M.; Isobe, R.; Higuchi, R. Isolation and structure of a new ganglioside molecular species. Eur. J. Org. Chem. 1999, 1999, 771-774.
30. Higuchi, R.; Inukai, K.; Jhou, J. X.; Honda, M.; Komori, T.; Tsuji, S.; Nagai, Y. Structure and biological activity of ganglioside molecular species. Liebigs Ann. Chem. 1993, 1993, 359-366.
31. Kaneko, M.; Kisa, F.; Yamada, K.; Miyamoto, T.; Higuchi, R. Structure of a new neuritogenic-active ganglioside from the sea cucumber stichopus japonicus. Eur. J. Org. Chem. 2003, 2003, 1004-1008.
32. Kawatake, S.; Inagaki, M.; Miyamoto, T.; Isobe, R.; Higuchi, R. Isolation and structure of a GM3-type ganglioside molecular species. Eur. J. Org. Chem. 1999, 1999, 765-769.
33. Inagaki, M.; Miyamoto, T.; Isobe, R.; Higuchi, R. Biologically active glycosides from Asteroidea, 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata. Chem. Pharm. Bull. 2005, 53, 1551-1554.
34. Yamada, K.; Matsubara, R.; Kaneko, M.; Miyamoto, T.; Higuchi, R. constituents of Holothuroidea. 10. Isolation and structure of a biologically active ganglioside molecular species from the sea cucumber Holothuria leucospilota. Chem. Pharm. Bull. 2001, 49, 447-452.
35. Kawatake, S.; Inagaki, M.; Isobe, R.; Miyamoto, T.; Higuchi, R. Isolation and structure of a GD3-type ganglioside molecular species possessing neuritogenic activity from the starfish Luidia maculata. Chem. Pharm. Bull. 2004, 52, 1002-1004.
36. Higuchi, R.; Inoue, S.; Inagaki, K.; Sakai, M.; Miyamoto, T.; Komori, T.; Inagaki, M.; Isobe, R. Biologically active glycosides from Asteroidea, 42. Isolation and structure of a new biologically active ganglioside molecular species from the starfish Asterina pectinifera. Chem. Pharm. Bull. 2006, 54, 287-291.
37. Higuchi, R.; Inagaki, M.; Yamada, K.; Miyamoto, T. Biologically active gangliosides from echinoderms. J. Nat. Med. 2007, 61, 367-370.
38. Kaneko, M.; Yamada, K.; Miyamoto, T.; Inagaki, M.; Higuchi, R. Neuritogenic activity of gangliosides from echinoderms and their structure–activity relationship. Chem. Pharm. Bull. 2007, 55, 462-463.
39. Ijuin, T.; Kitajima, K.; Song, Y.; Kitazume, S.; Inoue, S.; Haslam, S. M.; Morris, H. R.; Dell, A.; Inoue, Y. Isolation and identification of novel sulfated and nonsulfated oligosialyl glycosphingolipids from sea urchin sperm. Glycoconj. J. 1996, 13, 401-413.
40. Rockle, I.; Seidenfaden, R.; Weinhold, B.; Muhlenhoff, M.; Gerardy-Schahn, R.; Hildebrandt, H. Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons. Dev. Neurobiol. 2008, 68, 1170-1184.
41. Ando, H.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M. 1,5-Lactamized sialyl acceptors for various disialoside syntheses: Novel method for the synthesis of glycan portions of Hp-s6 and HLG-2 gangliosides. Angew. Chem. Int. Ed. 2005, 44, 6759-6763.
42. Svennerholm, L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 1957, 24, 604-611.
43. Warren, L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 1959, 234, 1971-1975.
44. Prokazova, N. V.; Mikhailov, A. T.; Kocharov, S. L.; Malchenko, L. A.; Zvezdina, N. D.; Buznikov, G.; Bergelson, L. D. Unusual gangliosides of eggs and embryos of the sea urchin Strongylocentrotus intermedius. Eur. J. Biochem. 1981, 115, 671-677.
45. Kochetkov, N. K.; Smirnova, G. P.; Chekareva, N. V. Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim. Biophys. Acta 1976, 424, 274-283.
46. Kitazume, S.; Kitajima, K.; Inoue, S.; Haslam, S. M.; Morris, H. R.; Dell, A.; Lennarz, W. J.; Inoue, Y. The occurrence of novel 9-O-sulfated N-glycolylneuraminic acid-capped α2 → 5-Oglycolyl-linked oligo/polyNeu5Gc chains in sea urchin egg cell surface glycoprotein. J. Biol. Chem. 1996, 271, 6694-6701.
47. Miyata, S.; Sato, C.; Kitamura, S.; Toriyama, M.; Kitajima, K. A major flagellum sialoglycoprotein in sea urchin sperm contains a novel polysialic acid, an alpha-2,9-linked poly-N-acetylneuraminic acid chain, capped by an 8-O-sulfated sialic acid residue. Glycobiology 2004, 14, 827-840.
48. Slomiany, B. L.; Kojima, K.; Banas-Gruszka, Z.; Murty, V. L.; Galicki, N. I.; Slomiany, A. Characterization of the sulfated monosialosyl triglycosyl ceramide from bovine gastric mucosa. Eur. J. Biochem. 1981, 119, 647-650.
49. Slomiany, A.; Kojima, K.; Banas-Gruszka, Z.; Slomiany, B. L. Structure of a novel sulfated sialoglycosphingolipid from bovine gastric mucosa. Biochem. Biophys. Res. Commun. 1981, 100, 778-784.
50. Yamakawa, N.; Sato, C.; Miyata, S.; Maehashi, E.; Toriyama, M.; Sato, N.; Furuhata, K.; Kitajima, K. Development of sensitive chemical and immunochemical methods for detecting sulfated sialic acids and their application to glycoconjugates from sea urchin sperm and eggs. Biochimie 2007, 89, 1396-1408.
51. Butor, C.; Higa, H. H.; Varki, A. Structural, immunological, and biosynthetic studies of a sialic acid-specific O-acetylesterase from rat liver. J. Biol. Chem. 1993, 268, 10207-10213.
52. Vandamme-Feldhaus, V.; Schauer, R. Characterization of the enzymatic 7-O-acetylation of sialic acids and evidence for enzymatic O-acetyl migration from C-7 to C-9 in bovine submandibular gland. J. Biochem. 1998, 124, 111-121.
53. Iwersen, M.; Vandamme-Feldhaus, V.; Schauer, R. Enzymatic 4-O-acetylation of N-acetylneuraminic acid in guinea-pig liver. Glycoconjugate J. 1998, 15, 895-904.
54. Tiralongo, J.; Schmid, H.; Thun, R.; Iwersen, M.; Schauer, R. Characterisation of the enzymatic 4-O-acetylation of sialic acids in microsomes from equine submandibular glands. Glycoconjugate J. 2000, 17, 849-858.
55. Kelm, A.; Shaw, L.; Schauer, R.; Reuter, G. The biosynthesis of 8-O-methylated sialic acids in the starfish Asterias rubens. Eur. J. Biochem. 1998, 251, 874-884.
56. Daniels, A. D.; Campeotto, I.; van der Kamp, M. W.; Bolt, A. H.; Trinh, C. H.; Phillips, S. E. V.; Pearson, A. R.; Nelson, A.; Mulholland, A. J.; Berry, A. Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM simulation, and mutagenesis. ACS Chem. Biol. 2014, 9, 1025-1032.
57. Dufner, G.; Schwörer, R.; Müller, B.; Schmidt, R. R. Base- and sugar-modified cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac) analogues synthesis and studies with α(2-6)-Sialyltransferase from Rat Liver. Eur. J. Org. Chem. 2000, 2000, 1467-1482.
58. Al-Horani, R. A.; Desai, U. R. Chemical sulfation of small molecules – Advances and challenges. Tetrahedron 2010, 66, 2907-2918.
59. Tanaka, M.; Kai, T.; Sun, X.-L.; Takayanagi, H.; Furuhata, K. Synthesis of N-glycolyl-8-O-sulfoneuraminic acid. Chem. Pharm. Bull. 1995, 43, 2095-2098.
60. Hanashima, S.; Ishikawa, D.; Akai, S.; Sato, K. Synthesis of the starfish ganglioside LLG-3 tetrasaccharide. Carbohydr. Res. 2009, 344, 747-752.
61. Marra, A.; Sinay, P. Acetylation of N-acetylneuraminic acid and its methyl ester. Carbohydrate Research 1989, 190, 317-322.
62. Dabrowski, U.; Friebolin, H.; Brossmer, R.; Supp, M. 1H-NMR studies at N-acetyl-D-neuraminic acid ketosides for the determination of the anomeric configuration II. Tetrahedron Lett. 1979, 20, 4637-4640.
63. Van Der Vleugel, D. J. M.; Van Heeswijk, W. A. R.; Vliegenthart, J. F. G. A facile preparation of alkyl α-glycosides of the methyl ester of N-acetyl- D-neuraminic acid. Carbohydr. Res. 1982, 102, 121-130.
64. Roy, R.; Laferrière, C. A. Synthesis of protein conjugates and analogues of N-acetylneuraminic acid. Can. J. Chem. 1990, 68, 2045-2054.
65. 梁健夫,國立清華大學化學研究所 博士論文,民國98年。
66. Fan, G.-T.; Lee, C.-C.; Lin, C.-C.; Fang, J.-M. Stereoselective synthesis of Neu5Acα(2→5)Neu5Gc: The building block of oligo/poly(→5-OglycolylNeu5Gcα2→) chains in sea urchin egg cell surface glycoprotein. J. Org. Chem. 2002, 67, 7565-7568.
67. Brook, M. A.; Chan, T. H. A simple procedure for the esterification of carboxylic-acids. Synthesis 1983, 201-203.
68. Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. The thioglycoside and glycosyl phosphite of 5-azido sialic acid: Excellent donors for the α-glycosylation of primary hydroxy groups. Angew. Chem. Int. Ed. 2001, 40, 2900-2903.
69. Demchenko, A. V.; Boons, G.-J. A novel direct glycosylation approach for the synthesis of dimers of N-acetylneuraminic acid. Chem. Eur. J. 1999, 5, 1278-1283.
70. Tanaka, H.; Nishiura, Y.; Takahashi, T. Stereoselective synthesis of oligo-α-(2,8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124-7125.
71. Shirode, N. M.; Deshmukh, A. R. A. S. 4-Formylazetidin-2-ones, synthon for the synthesis of (2R,3S) and (2S,3R)-3-amino-2-hydroxydecanoic acid (AHDA). Tetrahedron 2006, 62, 4615-4621.
72. Liu, J.-H.; Jin, Y.; Long, Y.-Q. Synthesis of the C5–C30 fragment of cyclodidemniserinol trisulfate via I2-mediated deprotection and ring closure tandem reaction. Tetrahedron 2010, 66, 1267-1273.
73. Xian, M.; Shuhler, B. J. Study of the synthesis of poecillanosine. Tetrahedron Lett. 2007, 48, 1209-1212.
74. Babu, K. C.; Ramadasu, G.; Gangaiah, L.; Madhusudhan, G.; Mukkanti, K. A new route for the synthesis of (R)-glyceraldehyde acetonide: A key chiral building block. Indian J. Chem., Sect B 2010, 41, 260-263.
75. Tamura, M.; Kochi, J. Coupling of grignard reagents with organic halides. Synthesis 1971, 6, 303-305.
76. Cahiez, G.; Chaboche, C.; Jézéquel, M. Cu-catalyzed alkylation of grignard reagents: A new efficient procedure. Tetrahedron 2000, 56, 2733-2737.
77. Kotra, L. P.; Xiang, Y.; Newton, M. G.; Schinazi, R. F.; Cheng, Y. C.; Chu, C. K. Structure-activity relationships of 2'-deoxy-2',2'-difluoro-L-erythro-pentofuranosyl nucleosides. J. Med. Chem. 1997, 40, 3635-3644.
78. Sugisaki, H.; Ruland, Y.; Baltas, M. Direct access to furanosidic eight-membered ulosonic esters from cis-α,β-epoxy aldehydes. Eur. J. Org. Chem. 2003, 2003, 672-688.
79. Kumar, P. S.; Banerjee, A.; Baskaran, S. Regioselective oxidative cleavage of benzylidene acetals: Synthesis of α- and β-benzoyloxy carboxylic acids. Angew. Chem. Int. Ed. 2010, 49, 804-807.
80. Yu, C.-C.; Withers, S. G. Recent developments in enzymatic synthesis of modified sialic acid derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654.
81. Goto, K.; Suzuki, T.; Tamai, H.; Ogawa, J.; Imamura, A.; Ando, H.; Ishida, H.; Kiso, M. Total synthesis and neuritogenic activity evaluation of ganglioside PNG-2A from the starfish protoreaster nodosus. Asian J. Org. Chem. 2015, 4, 1160-1171.
82. Liang, C.-F.; Yan, M.-C.; Chang, T.-C.; Lin, C.-C. Synthesis of S-linked α(2→9) octasialic acid via exclusive α S-glycosidic bond formation. J. Am. Chem. Soc. 2009, 131, 3138-3139.
83. Pan, Y.; Ayani, T.; Nadas, J.; Wen, S.; Guo, Z. Accessibility of N-acyl- D-mannosamines to N-acetyl-D-neuraminic acid aldolase. Carbohydr. Res. 2004, 339, 2091-2100.
84. Kumaraswamy, G.; Sadaiah, K.; Raghu, N. An organocatalytic enantioselective synthesis of (+)-duryne. Tetrahedron: Asymmetry 2012, 23, 587-593.
85. Al Dulayymi, J. A. R.; Baird, M. S.; Roberts, E. The synthesis of a single enantiomer of a major α-mycolic acid of M. tuberculosis. Tetrahedron 2005, 61, 11939-11951.
86. Schneider, R.; Freyhardt, C.; Schmidt, R. 5-Azido derivatives of neuraminic acid − Synthesis and structure. Eur. J. Org. Chem. 2001, 2001, 1655-1661.