簡易檢索 / 詳目顯示

研究生: 陳姿均
Chen, Tzu Chun
論文名稱: 以超快時間解析光學克爾光閘螢光光譜研究3-氰基-4-甲基-7-羥基香豆素錯合物激發態質子轉移動態學
Ultrafast time-resolved fluorescence studies of Excited-State Proton Transfer Dynamics in 3-cyano-4-methyl-7-hydroxycoumarin complexes
指導教授: 鄭博元
Cheng, Po Yuan
口試委員: 周佳駿
Chou, Chia Chun
劉振霖
Liu, Chen Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 動力學錯合物超快飛秒
外文關鍵詞: Dynamics, complex, ultrafast, femtosecond
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的為以飛秒雷射光譜研究激發態分子間質子轉移過程的超快動力學。我們以具有質子予體的3-氰基-4-甲基-7-羥基香豆素(3-cyano-4-methyl-7-hydroxycoumarin,簡稱3CN4MU)作為研究分子,使其與不同質子親和力的質子受體1-甲基咪唑(1-methylimidazole,簡稱1MI)及三乙胺(Triethylamine,簡稱TEA)在不同極性的溶劑甲苯(toluene,簡稱TL)及乙酸乙酯(ethyl acetate,簡稱EA)中形成不同構型之錯合物,利用靜態吸收光譜及靜態螢光光譜得到其光譜特徵,再以實驗室自行架設之飛秒雷射光譜系統取得時間解析螢光光譜。綜合各項結果以指認錯合物之不同構型並討論其激發態質子轉移(Excited-state intermolecular proton transfer,簡稱ESPT)。當以強質子親和力TEA作為質子受體時,我們發現部分錯合物在基態時已發生質子轉移,因而無法有效地觀測其ESPT現象。當以弱質子親和力1MI作為質子受體時,靜態光譜顯示其在基態時形成非質子轉移氫鍵錯合物。我們發現在TL非極性溶劑中,溶劑分子無法藉由solvation幫助錯合物質子轉移,因此在激發態時質子轉移並不顯著。當在EA極性溶劑中,EA可藉由solvation幫助錯合物質子轉移,使其整體自由能下降而穩定分子,故我們指認其在激發態時發生質子轉移。在時間解析螢光光譜中,我們以三個時間常數0.8 ps、30±2 ps、1700±100 ps擬合全螢光強度P(t)衰減曲線,我們將0.8 ps指認為質子從3CN4MU轉移至1MI上之第一步,為一solvation-controlled proton transfer過程,將30±2 ps指認為EA溶劑重新調整距離及位向之後,ion pair進一步調整自身結構分離以降低整體自由能的過程。最後,1700±100 ps則為質子轉移錯合物的激發態生命期。


    We employed a broadband ultrafast time-resolved fluorescence (TRFL) spectrometer implemented by optical Kerr gating (OKG) to study the excited-state proton transfer (ESPT) dynamics in 3-cyano-4-methyl-7-hydroxycoumarin (3CN4MU) complexes. We chose 3CN4MU as the proton donor and two bases, triethylamine (TEA) and 1-methylimidazole (1MI), of different proton affinities (PA) as the proton acceptors. We used two solvents, ethyl acetate (EA) and toluene (TL), of different polarities to study the solvent effect in ESPT. It was conclude from by steady-state spectra that the ground-state 3CN4MU transfers a proton from its phenolic group to TEA, which possesses stronger PA. Therefore, it is difficult to study ESPT in the 3CN4MU-TEA complex. On the other hand, 3CN4MU forms ground-state hydrogen-bonded complexes with 1MI (weaker PA) which suggesting that no proton-transfer reaction occurs in the ground state. Excited states are reached by 383 nm femtosecond laser pulse excitation. The observed TRFL spectra reveal that ESPT does not occur in 3CN4MU-1MI complex in TL, due to the weak solvation effect in nonpolar solvent. On the contrary, solvation-controlled proton transfer in excited state is observed in 3CN4MI-1MI complex in polar solvent EA. We used a total fluorescence intensity function P(t) to measure the excited-state population and transition moment evolution with time during the ESPT process. The P(t) function of 3CN4MU-1MI in EA can be described by three time constants. The fast initial decay component (0.8 ps) can be assigned to first step of proton transfer, which is controlled by solvation effect. The second decay component (30 ps) is assigned to the ion-pair structural relaxation to reduce the overall free energy. In the end, the 1700 ps component is assigned to the lifetime of the excited-sate proton-transferred ion pair.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 第1章 序論 1 1.1 質子轉移前言 1 1.2 激發態質子轉移理論 3 1.2.1 Photoacidity 3 1.2.2 Marcus Theory 6 1.3 文獻回顧 9 參考文獻 14 第2章 實驗系統與技術 16 2.1 超快飛秒雷射系統 16 2.1.1 雷射產生源 17 2.1.2 能量放大器 20 2.2 實驗技術 23 2.2.1 Optical Kerr Gating簡介 24 2.2.2 時間解析克爾光閘螢光光譜儀實驗系統與組成 25 2.2.3 超快時間解析克爾光閘螢光光譜實驗自動化數據擷取系統 36 2.3 時間解析克爾光閘螢光光譜儀的校正 38 2.3.1 光譜靈敏度的校正 38 2.3.2 時間延遲(temporal delay)校正 45 2.4 3CN4MU錯合物溶液的製備與測量 49 參考文獻 50 第3章 結果與討論 51 3.1 3CN4MU錯合物於TL及EA中之靜態光譜 51 3.1.1 3CN4MU於TL及EA中之靜態光譜 52 3.1.2 3CN4MU-1MI錯合物於TL及EA中之靜態光譜 53 3.1.3 3CN4MU-TEA錯合物於TL及EA中之靜態光譜 59 3.1.4 3CN4MU與KOH於水相之靜態光譜 64 3.1.5 靜態光譜綜合討論 65 3.2 3CN4MU錯合物於TL及EA中之時間解析螢光光譜 66 3.2.1 3CN4MU於TL及EA中之時間解析螢光光譜 66 3.2.2 3CN4MU-1MI錯合物於TL及EA中之時間解析螢光光譜 71 參考文獻 79 第4章 結論 80

    Ch1.
    [1] Douhai, A. J. Phys. Chem. 1994, 98, 13131.
    [2] Meyer, T.; Huinh, M.; Thorp, H. Angew. Chem. Int. Ed. Engl. 2007, 46, 5284-5304.
    [3] Arnaut, L.G.; Formosinho, S.J. J. Photochem. Photobiol. A. 1993, 75(1), 1-20.
    [4] Douhal, A.; Lahmani, F.; Zewail, A.H. Chem Phys. 1996, 207, 477.
    [5] Brewer, W.E.; Studer, S.L.; Standiford, M.; Chou, P.T. J. Phys. Chem. 1989, 93, 6088-6094.
    [6] Chou, P.T.; Martinez, M.L.; Clements, J.H. J. Phys. Chem. 1993, 97, 2618-2622.
    [7] Weber, K. Z. Phys. Chem. 1931, B15, 18
    [8] Förster, T. Naturwiss. 1949, 36, 186.
    [9] Weller, A. Naturwiss. 1955, 42, 175.
    [10] Vander Donckt, E. Progr. Reaction Kinet. 1970, 5, 273.
    [11] Förster, T. Pure Appl. Chem. 1970, 24, 443.
    [12] Ireland, J.F.; Wyatt, P.A.H. Ade. Phys. Org. Chem. 1976, 12, 131.
    [13] Klöpffer, W. Adv. Photochem. 1977, 10, 311.
    [14] Martynov, I.Y.; Demyashkevich, A.B.; Kuzmin, M.G. Russ. Chem. Rev. 1977, 46, 1.
    [15] Weller, A. Z. Electrochem. 1952, 56. 662.
    [16] Shizuka, H. Acc. Chem. Res. 1985, 18, 141.
    [17] Netzel, T.L.; Struve, W.S.; Rentzpis, P.M. Ann. Rev. Phys. Chem. 1973, 24, 473.
    [18] Formosiho, S.J.; Amaut, L.G. J. photochem. Photobiol. A: Chem. 1993, 75, 21-48.
    [19] Takakusa, M. J. Phys. Chem. 1979, 83, 810-813.
    [20] Agmon, N. J. Phys. Chem. 2005, 109, 13-35.
    [21] Chen, H.; Zheng, B.; Song, Y. Chemometrics 2011, 25, 20-27.
    [22] Dynamics of condensed phase molecular systems https://www.mbi-berlin.de/de/research/projects/3.1/topics/Topic2/index-topic2.html
    [23] Marcus, R.A. J. Phys. Chem. 1968, 72, 891-99.
    [24] Kiefer, P.M.; Hynes, J.T. J. Phys. Org. Chem. 2010, 23, 632–646.
    [25] Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. Curr. Med. Chem. 2009, 16, 4236.
    [26] Musa, M. A.; Cooperwood, J. S.; Khan, M. O. F. Curr. Med. Chem. 2008, 15, 2664.
    [27] Marika S.; Netti, P.A.; Rega, N.; Adamo, C.; Ciofini, I. Phys. Chem. Chem. Phys. 2014, 16, 8661-8666.
    [28] J. Sergio Seixas de Melo; Macanita, L.A. J. Phys. Chem. B 2015, 119, 2604−2610.
    [29] Moriya, T. Bull. Chem. Soc. Jpn. 1983, 56, 6-14.
    [30] Westlake, B.C.; Concepcion, J.J; Bettis, S.E.; Hampton, S.D.; Mehl, B.P.; Meyer, T.J.; Papanikolas, J.M. J. Phys. Chem.B. 2012, 116, 14886−14891.
    [31] Marika S.; Netti, P.A.; Adamo, C.; Rega, N.; Ciofini, I. J. Phys. Chem. B. 2013, 117, 16165–16173

    Ch.2
    [1] Fleming, G.R., Chemical Applications of Ultrafast Spectroscopy Oxford: New York, 1986.
    [2] Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York, 1999.
    [3] Boyd, R.W., Nonlinear Optics. Academic Press: San Deigo, CA, 1992.
    [4] http://www.moxtek.com/optics/visible_light.html.
    [5] Kalpouzos, C.; Lotshaw, W.T.; McMorrow, D.; Wallace, G.A.K., J. Phys. Chem. 1987, 91.
    [6] Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, I.; Sugimoto, N.; Fujiwara, S., Rev. Sci. Instrum. 2000, 71 (9), 3317-3322.
    [7] Marcus, Y., The Properties of Solvents. John Wiley: Sons, New York, 1998.
    [8] Neelakandan, M.; Pant, D.; Quitevis, E. L., Chem. Phys. Lett. 1997, 265.
    [9] Weber, M. J., Handbook of Optical Materials. CRC Press: Boca Raton, FL, 2003.
    [10] Kalpouzos, C.; Lotshaw, W. T.; Mcmorrow, D.; Kenneywallace, G. A., J. Phys. Chem. 1987, 91 (8), 2028-2030.
    [11] Takeda, J.; Nakajima, K.; Kurita, S.; Tomimoto, S.; Saito, S.; Suemoto, T., Physical Review B 2000, 62 (15), 10083-10087.
    [12] Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P., Applied Physics B-Lasers and Optics 2003, 76 (8), 809-814.
    [13] Arzhantsev, S.; Maroncelli, M., Appl. Spectrosc. 2005, 59 (2), 206-220.
    [14] http://www.andor.com/pdfs/specs/du970n.pdf.
    [15] Gardecki, J. A.; Maroncelli, M., Appl. Spectrosc. 1998, 52 (9), 1179-1189.
    [16] Bevinton, P. R.; Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill: New York, 1992.
    [17] http://www.cvimellesgriot.com/glossary/imagesDir/016.gif.

    Ch.3
    [1] Seixas de Melo, J.S.; Cabral, C.; Lima, J.C.; Macanita, A.L. J. Phys. Chem. 2011, 115, 8392-8398.
    [2] Westlake, B.C.; Brennaman, M. K.; Concepcion, J.J.; Paul, J.J.; Bettis, S.E.; Hampton, S.D.; Miller, S.A.; Lebedeva, N.V.; Forbes, M.D.E.; Moran, A.M.; Meyer, T.J.; Papanikolas, J.M. PNAS 2011, 108, 8554-8558.
    [3] Marika S.; Netti P.A.; Adamo, C.; Rega, N.; Ciofini, I. J. Phys. Chem. B. 2013, 117, 16165-16173.
    [4] Seixas de Melo, J.S.; Cabral, C. J.Phys. Chem. B. 2015, 119, 2604-2610.
    [5] Seixas de Melo, J.S.; Cabral, C.; Lima, J.C.; Macanita A.L. J. Phys. Chem. A. 2011, 115, 8392-8398
    [6] Seixas de Melo, J.S.; Macanita, A.L. Chem. Phys. Lett. 1993, 204, 556.
    [7] Cohen, B.; Huppert, D. J. Phys. Chem. A. 2001, 105, 7157-7164.
    [8] Simkovitch, R.; Kisin-Finfer, E.; Shomer, S.; Gepshtein, R.; Shabat, D.; Huppert, D. J. Photochem. Photobiol. A. 2013, 254, 45-53.
    [9] Westlake, B.C.; Paul, J.J.; Bettis, S.E.; Hampton, S.D.; Meyer, T.J.; Papanikolas, J.M. J. Phys. Chem.B. 2012, 116, 14886−14891
    [10] Takakusa, M. J. Phys. Chem. 1979, 832, No.7.
    [11] Eigen, M. Angew. Chem. 1964, 3, 1-19.
    [12] Freitas, A. A.; Quina, F.H.; Macanita, A.L. J. Phys. Chem. B. 2014, 118, 10448-10455
    [13] Freitas, A. A.; Quina, F.H.; Macanita, A.L. J. Phys. Chem. A. 2011, 115, 10988-10995.
    [14] Freitas A. A.; Quina F.H.; Fernandes A.C.; Macanita A.L. J. Phys. Chem. A. 2010, 114, 4188-4196.
    [15] Paulo, L.; Freitas, A. A.; da Silva, P.F.; Shimizu, K.; Quina, F.H.; Macanita, A.L. J. Phys. Chem. A. 2006, 110, 2089-2096.
    [16] Ron Simkovitch; Dan Huppert J. Phys. Chem. B 2015, 119, 14683−14696.
    [17] Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. J. Phys. Chem. 1995, 99, 17311-17337

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE