簡易檢索 / 詳目顯示

研究生: 藍麗華
Li-Hua Lan
論文名稱: 利用紫外光/臭氧提升SU-8結構表面之親水特性
Enhancement of Hydrophilic Property on SU-8 Structures by UV/Ozone Treatment
指導教授: 曾繁根
Fang-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 68
中文關鍵詞: 親水封閉流道
外文關鍵詞: SU-8, 172-nm Excimer VUV, VUV/Ozone
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微系統製程中SU-8是廣泛備研究使用的材料,但是他本身親水性約在80˚並不良好,在一些需要毛細力的應用上例如微全系統分析…等便受到了限制。為了達到SU-8光阻表面長效親水的目的,我們利用172-nm Excimer VUV這個儀器來進行表面處理,並且可以長時間的將SU-8親水角維持在很低的親水角,以照射時間300秒為例可以到達8˚以下。另一個現象是當經過172nm UV/臭氧處理過後之試片的表面在水沖洗過後後會有親水角上升的現象,判斷是因為表面產生低分子氧化物所造成,因為這生成物與基材表面黏著力較差所以會被水給帶走。內容也對VUV/Ozone的試片進行FT-IR與XPS檢測,並藉此推測出兩種表面如何產生水性官能基反應的機制。
    另一個重點是製作SU-8封閉流道並且直接對流道內部進行親水化處理,找出對SU-8薄膜穿透力較佳且又能有效打斷表面鍵結的254nm波長紫外光,對封閉流道進行UV/Ozone的處理後,發現水在流道內的速度增加,與未處理的流道相比有顯著的效果。


    摘要......................................................Ⅰ 誌謝......................................................Ⅱ 目錄......................................................Ⅲ 圖目錄....................................................Ⅴ 表目錄....................................................Ⅷ 第一章 研究背景...........................................1 1-1 親水性SU-8的主要應用...................................1 1-2 研究動機...............................................6 1-3 SU-8厚膜光阻..........................................10 1-3-1 SU-8合成方法........................................11 1-3-2 SU-8光阻材料性質....................................12 第二章 文獻回顧...........................................14 2-1 化學方法..............................................14 2-2 電漿處理..............................................19 2-3 紫外光/臭氧處理.......................................22 2-4 文獻整理..............................................24 第三章 實驗設計與方法.....................................26 3-1 Acid-catalyzed cleavage...............................26 3-2 Excimer 172nm VUV/O3處理..............................29 3-2-1 Excimer 172nm VUV/O3儀器原理........................32 3-3 254nm UV/Ozone 於SU-8封閉流道之親水處理...............36 第四章 結果與討論.........................................41 4-1方法一: Acid-catalyzed cleavage........................41 4-2 172nm Excimer VUV親水處理.............................44 4-2-1 表面親水角之量測....................................44 4-2-2 傅立葉轉換紅外光譜儀(FT-IR)分析.....................47 4-2-3 X光電子能譜儀(XPS)分析..............................49 4-2-4 SU-8光阻與172nm VUV/Ozone之反應機制.................53 4-2-4-1 低分子量氧化物(Low-Mocular-Weight Oxidized Material).........................................53 4-2-4-2 反應機制..........................................57 4-3 SU-8光阻封閉流道親水實驗..............................60 4-3-1 紫外光波長對SU-8光阻薄膜穿透力實驗..................60 4-3-2製作親水化封閉流道與處理.............................61 4-3-3 親水化封閉流道內流速計算............................63 結論......................................................66 參考文獻..................................................67

    [1] Se´verine Le Gac; Ce´cile Cren-Olive´; Christian Rolando; Steve Arscott. “A Novel Nib-Like Design for Microfabricated Nanospray Tips.” J Am Soc Mass Spectrom 2004, 15, 409–412.

    [2] 楊龍杰; 陳冠宇, “微機電系統課題中之毛細作用力探討”。

    [3] 王長志; 陳育群; 黃俊瑋; 胡一君; 游智勝; 陳柏台, “微流道之被動閥組製程分析”。

    [4] J. Liu; B. Cai; J. Zhu; G. Ding; X. Zhao; C. Yang; D. Chen. “Process research of high aspect ratio microstructure using SU-8 resist.” Microsystem Technologies, 2004, 10, 265–268.

    [5] Yuli Wang; Mark Bachman; Christopher E. Sims; G. P. Li; Nancy L. Allbritton. “Simple Photografting Method to Chemically Modify and Micropattern the Surface of SU-8 Photoresist.” Langmuir 2006, 22, 2719-2725.

    [6] Chun-Lung Wu; Ming-Hung Chen; Fan-Gang Tseng. “SU-8 Hydrophilic Modification by Forming Copolyrner with Hydrophilic Epoxy Molecule.” 7th lnternational Conference on Miniaturized Chemical and Blochemlcal Analysts Systems. 2003

    [7] Maria Nordstr□m; Rodolphe Marie; Montserrat Calleja; Anja Boisen. “Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication.” J. Micromech. Microeng. , 2004, 14, 1614–1617.

    [8] Nnsser Iranpoor; Peyman Salehi. “Ceric Ammonium Nitrate: a Mild and Efficient Reagent for Conversion of Epoxides to β-Nitrato Alcohols.” Tetrahedron, 1995, Vol. 51, No. 3, 909-912.

    [9] L. S. Penn; T. F. Hunter; R. P. Quirk; Y. Lee. “Deactivation of Epoxide-Derivatized Surfaces.” Macromolecules 2002, 35, 2859-2860 2859.
    [10] Jun Zhang; W. X. Zhou; Mary B. Chan-Park; Samuel R. Conner. “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming.” Journal of The Electrochemical Society, 2005, 152(10), C716-C721.

    [11] T. Murakami; S. Kuroda; Z. Osawa. “Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment.” JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 202, 37–44.

    [12] D. O. H. Teare; C. Ton-That; R. H. Bradley. “Surface characterization and ageing of ultraviolet–ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy.” Surf. Interface Anal., 2000, 29, 276–283.

    [13] J. Genzer; K. Efimenko. “Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers.” Science, 2000, 290, 2130.

    [14]U. Kogelschatz; B. Eliasson; W. Egli. “From ozone generators to flat television screens: history and future potential of dielectric-barrier.” Pure Appl. Chem, 1999, 71, 10, 1819-1828.

    [15]J. M. Shaw; J. D. Gelorme; N. C. LaBianca; W. E. Conley; S. J. Holmes. ”Negative photoresists for optical lithography.” IBM Journal of Research and Development, 1997, 41, 1/2, 81.

    [16] M.R. Davidson; S.A. Mitchell; R.H. Bradley. “Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene.” Surface Science, 2005, 581, 169–177.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE